Get Started with MotionGenesis - Short

F=ma

To download and install a demo version of the program (PC/Macintosh), go to http://www.MotionGenesis.com Click on the Download Software button.

Math

Browse to the MotionGenesis folder and double-click on:
On line (1), type:
To try symbolic manipulation, type:
To evaluate fred at $t=\mathrm{pi} / 3$, type:
To convert units from inches to cm , type:
To find the roots of the quadratic equation, type:

MotionGenesisStartHere
sum $=2+2$
fred $=3 * \sin (t) \wedge 2+2 * \cos (t) \wedge 2$
test $=$ Evaluate (fred, $\mathrm{t}=\mathrm{pi} / 3$)
inchToCm = ConvertUnits (inch, cm)
Constant a, b, c
Variable x
Roots $=$ GetQuadraticRoots ($\left.a^{*} \mathbf{x}^{\wedge} 2+b * x+c, ~ x\right)$
To save input to the text file FirstDemo.txt, type: Save FirstDemo.txt
To save input and output to file FirstDemo.html, type: Save FirstDemo.html
For general help and/or a list of commands, type: Help
For help with a command (e.g., Solve), type: Help SOLVE
To exit the program, type

Quit

Vectors

1. To create right-handed orthogonal unit vectors $A x>, A y>, A z>$ fixed in a RigidFrame A, type:

RigidFrame A

2. To define a vector $v>$ in terms of $A x>, A y>, A z>$, type:

Similarly, one can define a vector $w>$ with:
3. To multiply the vector $v>$ by 5 , type:
4. To add vectors $v>$ and $w>$, type:
5. To dot-multiply $v>$ with $w>$, type:
6. To cross-multiply $v>$ with $w>$, type:
7. To find the magnitude of $v>$, type:
$\mathrm{v>}=2 * A x>+3 * A y>+4 * A z>$
w> = 6*Ax> + 7*Ay> + 8*Az>
vFive> = 5 * v>
addVw> = v> + w $>$
dotVW = Dot(v>, w>)
crossVW> = Cross(v>, w>)
magv = GetMagnitude ($v>$)
8. To find the magnitude-squared of $v>$, type: vSquared $=$ GetMagnitudeSquared ($v>$)
9. To find the unit vector in the direction of $v>$, type: unitV> = GetUnitVector ($v>$)
10. To find the angle between $v>$ and $w>$, type: theta $=$ GetAngleBetweenVectors ($v>, w>$)
11. To save input (for subsequent re-use), type
12. To save input and output, type:

Save VectorSampleCommands.txt
13. To quit the program, type:

Save VectorSampleCommands.html Quit.

Solving linear algebraic equations

$$
\begin{aligned}
& 2^{*} x+3^{*} y=\sin (t) \\
& 4^{*} x+t^{*} y=\cos (t)
\end{aligned}
$$

To symbolically solve the previous set of linear equations for x and y, type

```
Variable x, y
Zero[1] = 2*x + 3*y - sin(t)
Zero[2] = 4*x + 5*y - cos(t)
Solve( Zero, x, y )
```

To save input (for subsequent re-use), type
To save input and output, type:

Save SolveLinearEqn.txt
Save SolveLinearEqn.html

Solving one nonlinear algebraic equation

To save input (for subsequent re-use), type
To save input and output, type:

Save SolveNonlinearEqn1.txt Save SolveNonlinearEqn1.html

Solving sets of nonlinear algebraic equations

Equations for a circle and sine curve.

$$
\begin{aligned}
& \mathrm{x}^{\wedge} 2+\mathrm{y}^{\wedge} 2=1 \\
& \mathrm{y}=\sin (\mathrm{x})
\end{aligned}
$$

To numerically solve the previous set of nonlinear equations for x and y, type:

Variable x, y
Zero[1] $=x^{\wedge} 2+y^{\wedge} 2-1$
Zero[2] = $y-\sin (x)$
Solve (Zero, $x=3, y=5$)

These nonlinear equations have two solutions. The program's solution of $x=0.739085$ and $y=0.673612$ depend on the guess. The program frequently converges to a solution close to the starting guess.

To save input (for subsequent re-use), type
To save input and output, type:

Save SolveNonlinearEqn2.txt
Save SolveNonlinearEqn2.html

Solving ODEs (differential equations)

Solve the nonlinear ordinary differential equation

$$
x^{\prime \prime}=\cos (2 * t)+\sin (x)
$$

with the initial values $x=1 \mathrm{~m}$ and $x^{\prime}=0.2 \mathrm{~m} / \mathrm{s}$, Create a plot with t varying from 0 to 20 seconds.

Note: t is the independent variable time.
The prime symbol ' denotes time-differentiation.

This plot was generated with the MotionGenesis Plot command

To numerically solve this ODE with output every 0.02 sec for the given initial values, type

```
Variable }\mp@subsup{x}{}{\prime\prime}=\operatorname{cos(2*t) + sin(x)
Input }\mathbf{x}=1\textrm{m},\mp@subsup{\mathbf{x}}{}{\prime}=0.2\textrm{m}/\textrm{s}, tFinal = 20 sec, tStep = 0.02 se
OutputPlot t sec, x m, x' m/s
ODE() odeOutputFile % Solves ODE (no MATLAB® required)
ODE() odeOutputFile.m % Creates MATLAB® file that solves ODE.
```


Next: See MotionGenesisTutorial.pdf installed in your: MotionGenesis -> MGToolbox folder (after you download/install)

