
Copyright © 1988-2016 Motion Genesis LLC. All rights reserved.

Get Started with MotionGenesis – Short

To download and install a demo version of the program (PC/Macintosh), go to

http://www.MotionGenesis.com

Click on the Download Software button.

Math
Browse to the MotionGenesis folder and double-click on: MotionGenesisStartHere

On line (1), type: sum = 2 + 2

To try symbolic manipulation, type: fred = 3*sin(t)^2 + 2*cos(t)^2

To evaluate fred at t=pi/3, type: test = Evaluate(fred, t = pi/3)

To convert units from inches to cm, type: inchToCm = ConvertUnits(inch,cm)

To find the roots of the quadratic equation, type: Constant a, b, c

Variable x
Roots = GetQuadraticRoots(a*x^2 + b*x + c, x)

To save input to the text file FirstDemo.txt, type: Save FirstDemo.txt

To save input and output to file FirstDemo.html, type: Save FirstDemo.html

For general help and/or a list of commands, type: Help

For help with a command (e.g., Solve), type: Help SOLVE

To exit the program, type Quit

Vectors
1. To create right-handed orthogonal unit vectors

Ax>, Ay>, Az> fixed in a RigidFrame A, type:

RigidFrame A

2. To define a vector v> in terms of Ax>, Ay>, Az>, type: v> = 2*Ax> + 3*Ay> + 4*Az>

 Similarly, one can define a vector w> with: w> = 6*Ax> + 7*Ay> + 8*Az>

3. To multiply the vector v> by 5, type: vFive> = 5 * v>

4. To add vectors v> and w>, type: addVW> = v> + w>

5. To dot-multiply v> with w>, type: dotVW = Dot(v>, w>)

6. To cross-multiply v> with w>, type: crossVW> = Cross(v>, w>)

7. To find the magnitude of v>, type: magV = GetMagnitude(v>)

8. To find the magnitude-squared of v>, type : vSquared = GetMagnitudeSquared(v>)

9. To find the unit vector in the direction of v>, type: unitV> = GetUnitVector(v>)

10. To find the angle between v> and w>, type: theta = GetAngleBetweenVectors(v>, w>)

11. To save input (for subsequent re-use), type Save VectorSampleCommands.txt

12. To save input and output, type: Save VectorSampleCommands.html

13. To quit the program, type: Quit.

Copyright © 1988-2016 Motion Genesis LLC. All rights reserved.

Solving linear algebraic equations

2*x + 3*y = sin(t)

4*x + t*y = cos(t)

To symbolically solve the previous set of linear equations for x and y, type

Variable x, y

Zero[1] = 2*x + 3*y - sin(t)

Zero[2] = 4*x + 5*y - cos(t)

Solve(Zero, x, y)

To save input (for subsequent re-use), type Save SolveLinearEqn.txt

To save input and output, type: Save SolveLinearEqn.html

__

Solving one nonlinear algebraic equation

x^2 – cos(x) = 0

To numerically solve the previous nonlinear

equation for x , type:

Variable x

Solve(x^2 - cos(x), x = 0.2)

Nonlinear equations may have multiple solutions.

The program's solution of x = 0.8241323 depends on the

starting guess which is specified by the argument x = 0.2.

If instead, one starts with a guess of x = -9, the program

produces a different solution, namely x = -0.8241323.

The program frequently converges to a solution close to the

starting guess.

To save input (for subsequent re-use), type Save SolveNonlinearEqn1.txt

To save input and output, type: Save SolveNonlinearEqn1.html

Copyright © 1988-2016 Motion Genesis LLC. All rights reserved.

Solving sets of nonlinear algebraic equations

Equations for a circle and sine curve.

x^2 + y^2 = 1

y = sin(x)

To numerically solve the previous set of

nonlinear equations for x and y, type:

Variable x, y

Zero[1] = x^2 + y^2 – 1

Zero[2] = y – sin(x)

Solve(Zero, x = 3, y = 5)

These nonlinear equations have two solutions. The program's solution of x = 0.739085 and y = 0.673612 depend on the guess.

The program frequently converges to a solution close to the starting guess.

To save input (for subsequent re-use), type Save SolveNonlinearEqn2.txt

To save input and output, type: Save SolveNonlinearEqn2.html

Solving ODEs (differential equations)

Solve the nonlinear ordinary differential equation

x’’ = cos(2*t) + sin(x)

with the initial values x=1 m and x’=0.2 m/s,

Create a plot with t varying from 0 to 20 seconds.

Note: t is the independent variable time.

The prime symbol ' denotes time-differentiation.

This plot was generated with the MotionGenesis Plot command

To numerically solve this ODE with output every 0.02 sec for the given initial values, type

Variable x’’ = cos(2*t) + sin(x)

Input x = 1 m, x’ = 0.2 m/s, tFinal = 20 sec, tStep = 0.02 sec

OutputPlot t sec, x m, x’ m/s

ODE() odeOutputFile % Solves ODE (no MATLAB® required)

ODE() odeOutputFile.m % Creates MATLAB® file that solves ODE.

__

Next: See MotionGenesisTutorial.pdf installed in your:

MotionGenesis -> MGToolbox folder (after you download/install)

