MIPSI: Rigid-body pendulum

Modeling (assumptions)
The figure to the right shows a non-uniform density rigid rod \(A \) attached by a frictionless revolute/pin joint to Earth \(N \) (a Newtonian reference frame). The only external forces on rod \(A \) are contact forces at \(N_o \) (the point of \(N \) in contact with \(A \)) and Earth’s gravitational forces (modeled as local and uniform).

Identifiers (label \(L, \theta, \) and unit vectors \(\hat{n}_x, \hat{n}_y, \hat{n}_z, \hat{a} \), on the figure)
Right-handed orthogonal unit vectors \(\hat{n}_x, \hat{n}_y, \hat{n}_z \) and \(\hat{a}_x, \hat{a}_y, \hat{a}_z \) are fixed in \(N \) and \(A \), respectively, with \(\hat{n}_x \) horizontally-right, \(\hat{n}_y \) vertically-upward, \(\hat{a}_y \) directed from \(A_{cm} \) (\(A \)’s center of mass) to \(N_o \), and \(\hat{a}_z = \hat{n}_z \) parallel to the pin.

<table>
<thead>
<tr>
<th>Description</th>
<th>Symbol</th>
<th>Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earth’s gravitational constant</td>
<td>(g)</td>
<td>Constant</td>
<td>9.8 m/s²</td>
</tr>
<tr>
<td>Distance between (N_o) and (A_{cm})</td>
<td>(L)</td>
<td>Constant</td>
<td>7.5 cm</td>
</tr>
<tr>
<td>Mass of rod (A)</td>
<td>(m)</td>
<td>Constant</td>
<td>10 grams</td>
</tr>
<tr>
<td>(A)’s moment of inertia about (A_{cm}) for (\hat{a}_z)</td>
<td>(I)</td>
<td>Constant</td>
<td>50 g * cm²</td>
</tr>
<tr>
<td>Angle from (\hat{n}_y) to (\hat{a}_z) with (\hat{a}_z) sense</td>
<td>(\theta)</td>
<td>Variable</td>
<td></td>
</tr>
</tbody>
</table>

Physics

Complete rod \(A \)’s free-body diagram (FBD) (to the right).

Form an ODE (ordinary differential equation) governing this pendulum’s motion.

Euler’s 2D rigid body equation together with the moment of inertia parallel axis theorem and subsequent dot-multiplication with \(\hat{n}_z \) and rearrangement gives

\[
\begin{align*}
\vec{M}_z^{2D} &= \vec{I}_{zz} \vec{\alpha} \\
\Rightarrow \quad \vec{M}_z^{A/N_o} &= -m g L \sin(\theta) \hat{n}_z = (1 + m L^2) \hat{\theta} \hat{n}_z \\
(1 + m L^2) \hat{\theta} + m g L \sin(\theta) &= 0 \\
\Rightarrow \quad \dot{\theta} + \frac{m g L}{1 + m L^2} \sin(\theta) &= 0
\end{align*}
\]

Simplify and solve
By defining the constant \(\omega \) (shown right), the previous ODE is written in a form that clearly shows it is nonlinear due to \(\sin(\theta) \).

Since the ODE is nonlinear, a closed-form (analytical/symbolic) solution is difficult. The plot shows a numerical (computer) solution to this nonlinear ODE when the pendulum is released from rest with \(\theta(t=0) = 90^\circ \) or \(\theta(t=0) = 30^\circ \).

Alternately, making the small-angle approximation \(\sin(\theta) \approx \theta \) produces the linear ODE:

\[
\ddot{\theta} + \omega^2 \theta \approx 0
\]

whose closed-form (analytical/symbolic) solution is \(\theta(t) \approx \theta(0) \cos(\omega t) \).

Interpret (communicate)
The pendulum swings back and forth with an amplitude that depends on starting angle (when released from 90°, it swings higher than when released from 30°). The solution to the linear ODE says the pendulum’s oscillation frequency \(\omega \) does not depend on release angle. However, the plot of the nonlinear ODE shows the pendulum has less-frequent oscillations when released from 90° than when released from 30°. This is due to the linear ODE only approximating the nonlinear ODE accurately at small angles (\(\theta \ll 1 \) radians).
% File: RigidBodyPendulumDynamics.txt
% Copyright (c) 2009 Motion Genesis LLC. All rights reserved.
\[--\]
NewtonianFrame \(\mathbb{N} \) % Earth.
RigidBody \(\mathbb{A} \) % Rod.
\[--\]
Variable \(\theta'' \) % Angle and 1st/2nd time-derivatives.
Constant \(g = 9.8 \text{ m/s}^2 \)
Constant \(L = 7.5 \text{ cm} \)
\(\mathbb{A}.\text{SetMassInertia}(m = 10 \text{ grams}, \ I_{Ax}, \ I_{Ay}, \ I = 50 \text{ g*cm}^2) \)
\[--\]
% Rotational and translational kinematics.
\(\mathbb{A}.\text{RotateZ}(\mathbb{N}, \theta) \)
\(\mathbb{Acm}.\text{Translate}(\mathbb{No}, -L*Ay>) \)
\[--\]
% Add relevant forces.
\(\mathbb{Acm}.\text{AddForce}(-m*\mathbb{g}*\mathbb{Ny}>) \)
\[--\]
% Rotational equation of motion.
\(\text{Dynamics} = \text{Dot} (\mathbb{Nz}>, \mathbb{A}.\text{GetDynamics}(\mathbb{No})) \)
\(\text{Solve}(\text{Dynamics}, \theta'') \)
\[--\]
% Integration parameters and initial values.
Input \(t_{\text{Final}} = 4 \text{ sec}, \ t_{\text{Step}} = 0.02 \text{ sec}, \ \text{absError} = 1.0E-07 \)
Input \(\theta = 90 \text{ deg}, \ \theta' = 0.0 \text{ rad/sec} \)
\[--\]
% List output quantities and solve ODEs.
\(\text{OutputPlot} \ t \text{ seconds}, \ \theta \text{ degrees} \)
\(\text{ODE()} \ \text{RigidBodyPendulumDynamics} \)
\[--\]
% Record input together with responses
Save RigidBodyPendulumDynamics.all
Quit

3 The Shortt clock pictured here is the most accurate mechanical clock ever made, with an error rate of 1 sec in 12 years. The clock is so sensitive it detects tiny changes in gravity due to tidal distortions on Earth caused by the Sun and Moon's gravity. Paul Heyl from NIST used it for a new determination of the gravitational constant.

Copyright © 2009-2016 Motion Genesis LLC.
www.MotionGenesis.com