4.1 4 (1900 BC). Sine, cosine, tangent as ratios of sides of a right triangle. (Section 1.4)

Below is a *right triangle* (triangle with a 90° angle) with one angle labeled as θ . Write definitions for sine, cosine, and tangent in terms of:

- hypotenuse the triangle's longest side (opposite the 90° angle)
- opposite the side opposite to θ
- **a**djacent the side adjacent to θ

I can draw a triangle with a negative-length side **True/False** Using the <u>limited</u> definition shown right, $\sin(\theta)$ **True/False** (the sine of an angle) can be negative.

4.2 4 (1900 BC - 1400 AD) Pythagorean theorem and law of cosines. (Section 1.4.2).

Draw a right-triangle with a hypotenuse of length c and other sides of length a and b. Relate c to a and b with the **Pythagorean theorem**.

Result:

Babylonians 1900 BC to Pythagoreus 525 BC.

memorize

Shown right is a triangle with angles α , β , ϕ opposite sides a, b, c, respectively. Complete each formula below using the *law of cosines* (Euclid 300 BC - Al-Kashi 1400 AD).

Result:

memorize

с В ф

The *Pythagorean theorem* is a special case of the *law of cosines*. True/False. (circle one).

4.3 4 (140 BC - 1500 AD) Unit circle concept of sine and cosine. (Section 1.4.1)

Label the blanked coordinates on the unit circle to the right.

Note: The unit circle expands the concepts of sine and cosine to negative values and its tabulated values provide data for Euler's graphs.

Note: Negative numbers were invented $\approx 650\,\mathrm{AD}$, developed 900 AD - 1200 AD, and widely adopted 1500 AD.

The triangle definition of sine and cosine in Hw 4.1 results in $0^{\circ} < \theta < 90^{\circ}$ $0 < \sin(\theta) < 1$ $0 < \cos(\theta) < 1$ The unit circle extends the range for θ and sine and cosine to $0^{\circ} \le \theta \le 360^{\circ}$ $\le \sin(\theta) \le 1$ $\le \cos(\theta) \le 1$

4.4 ♣ (Euler 1730 AD) Sine and cosine as functions. (Section 1.4.3)

Graph sine and cosine as functions of the angle θ over the range $0 \le \theta \le 2\pi$ radians. Note: In 1730 A.D., Euler invented the sine and cosine <u>functions</u> (more than just ratios of sides of a triangle).

4.5 ♣ Ranges for arguments and return values for inverse trigonometric functions.

Determine all real return values and argument values for the following **real** trigonometric and inverse-trigonometric functions in computer languages such as Java, C^{++} , MATLAB[®], MotionGenesis, . . .

Range of return values for z	Function	Range of argument values for x	Note
$-1 \le z \le$	$z = \cos(x)$	< x <	
$\leq z \leq$	$z = \sin(x)$	< x <	
$-\infty$ < z < ∞	$z = \tan(x)$	$-\infty$ $< x < \infty$	$x \neq \frac{\pm \pi}{2}, \frac{\pm 3\pi}{2}, \dots$
$\leq z \leq$	$z = a\cos(x)$	$\leq x \leq$	
$\leq z \leq$	$z = a\sin(x)$	$\leq x \leq$	
$-\pi/2$ < z < $\pi/2$	z = atan(x)	$-\infty$ $< x < \infty$	
$\leq z \leq$	$z = \operatorname{atan2}(y, x)$	< y <	$\mathtt{atan2}(0,0)$ is undefined
		< x <	

4.6 \$\ \text{What is an angle?} \tag{Section 5.7}.

<u>Draw</u> the "geometry equipment" listed in the 1^{st} column of the following table. Complete the 2^{nd} column with appropriate ranges for the angle θ (in degrees).

"Geometry equipment"	Draw	Appropriate range for θ
2 lines		$0^{\circ} \leq \theta \leq$
Vector and line		$\leq \theta \leq$
2 vectors		$\leq \theta \leq$
2 vectors and a sense of positive rotation		$<$ θ \leq
2 vectors, a sense of \pm rotation, and time-history/continuity	Not applicable	< θ <

4.7 ${}^aR^b$ for dot-products, cross-products, and angles between vectors. (Section 5.4).

The ${}^aR^b$ rotation table relates two sets of right-handed, orthogonal, unit vectors, namely $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{y}$, $\hat{\mathbf{a}}_{z}$ and $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{y}$, $\hat{\mathbf{b}}_{z}$.

${}^a R^b$	A	$\widehat{\mathbf{b}}_{\mathrm{y}}$	$\widehat{\mathbf{b}}_{\mathrm{z}}$
$\widehat{\mathbf{a}}_{\mathrm{x}}$	0.962 0.170 -0.212	-0.084	0.259
$\widehat{\mathbf{a}}_{\mathrm{y}}$	0.170	0.928	-0.330
$\widehat{\mathbf{a}}_{\mathrm{z}}$	-0.212	0.362	0.908

Efficiently determine the following dot-products and angles between vectors (2⁺ significant digits). Then perform the calculations involving $\vec{\mathbf{v}}_1 = 2\,\widehat{\mathbf{a}}_x$ and $\vec{\mathbf{v}}_2 = \widehat{\mathbf{a}}_x + \widehat{\mathbf{b}}_x$. Show work.

$\hat{\mathbf{a}}_{\scriptscriptstyle \mathrm{X}} \cdot \hat{\mathbf{a}}_{\scriptscriptstyle \mathrm{X}} =$	$\mathbf{Z}(\widehat{\mathbf{a}}_{\mathrm{x}},\widehat{\mathbf{a}}_{\mathrm{x}}) \; = \; \underline{\hspace{1cm}}^{\circ}$	$\widehat{\mathbf{a}}_{\mathrm{y}} \cdot \widehat{\mathbf{a}}_{\mathrm{z}} =$	$\mathbf{Z}(\widehat{\mathbf{a}}_{\mathrm{y}},\widehat{\mathbf{a}}_{\mathrm{x}}) = \mathbf{Z}^{\circ}$
$\hat{\mathbf{b}}_{\mathrm{z}} \cdot \hat{\mathbf{b}}_{\mathrm{y}} = $	$\mathbf{Z}(\widehat{\mathbf{b}}_{\mathrm{z}},\widehat{\mathbf{b}}_{\mathrm{y}}) \; = \; \underline{\hspace{1cm}}^{\circ}$	$\widehat{\mathbf{a}}_{\mathrm{x}} \cdot \widehat{\mathbf{b}}_{\mathrm{x}} =$	$\mathbf{Z}(\widehat{\mathbf{a}}_{\mathrm{x}},\widehat{\mathbf{b}}_{\mathrm{x}}) \; = \; \underline{\hspace{1cm}}^{\circ}$
$\widehat{\mathbf{a}}_{\mathrm{x}} \cdot \widehat{\mathbf{b}}_{\mathrm{y}} = $	$\mathbf{Z}(\widehat{\mathbf{a}}_{x}, \widehat{\mathbf{b}}_{y}) = \mathbf{z}^{\circ}$	$ec{\mathbf{v}}_1 \cdot ec{\mathbf{v}}_2 pprox lacksquare$	$\mathbf{Z}(ec{\mathbf{v}}_1,ec{\mathbf{v}}_2) pprox \mathbf{v}_2^{\circ}$

Result:

$$ec{\mathbf{v}}_1 imes ec{\mathbf{v}}_2 = \mathbf{\widehat{b}}_{\mathrm{y}} + \mathbf{\widehat{b}}_{\mathrm{z}} = \mathbf{\widehat{a}}_{\mathrm{y}} + \mathbf{\widehat{a}}_{\mathrm{z}}$$

Express the unit vector $\hat{\mathbf{u}}$ in the direction of $3\hat{\mathbf{a}}_z + 4\hat{\mathbf{b}}_z$ in terms of $\hat{\mathbf{a}}_z$ and $\hat{\mathbf{b}}_z$. Express $\vec{\mathbf{v}} = \hat{\mathbf{a}}_v + \hat{\mathbf{b}}_v$ in terms of $\hat{\mathbf{a}}_x$, $\hat{\mathbf{a}}_v$, $\hat{\mathbf{a}}_z$.

 $\textbf{Result:} \quad \widehat{\mathbf{u}} = \boxed{ } \quad \widehat{\mathbf{a}}_z \ + \boxed{ } \quad \widehat{\mathbf{b}}_z \qquad \vec{\mathbf{v}} = \boxed{ } \quad \widehat{\mathbf{a}}_x \ + \boxed{ } \quad \widehat{\mathbf{a}}_y \ + \boxed{ } \quad \widehat{\mathbf{a}}_z$

4.8 ♣ SohCahToa: Rotation tables for a landing gear system. (Section 5.5).

The figures below show three versions of the same landing gear system with a strut A that has a simple rotation relative to a fuselage N. Each figure has a different orientation for right-handed orthogonal unit vectors $\hat{\mathbf{n}}_{x}$, $\hat{\mathbf{n}}_{y}$, $\hat{\mathbf{n}}_{z}$ (fixed in N) and $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{y}$, $\hat{\mathbf{a}}_{z}$ (fixed in A). Redraw $\hat{\mathbf{n}}_{x}$, $\hat{\mathbf{n}}_{y}$, $\hat{\mathbf{n}}_{z}$ and $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{y}$, $\hat{\mathbf{a}}_{z}$ so it is easy to see a right-triangle with sines and cosines. Express each of $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{y}$, $\hat{\mathbf{a}}_{z}$ in terms of $\hat{\mathbf{n}}_{x}$, $\hat{\mathbf{n}}_{y}$, $\hat{\mathbf{n}}_{z}$, then form the ${}^{a}R^{n}$ rotation table for each figure. Next, form ${}^{N}\vec{\boldsymbol{\omega}}^{A}$ (A's angular velocity in N) in terms of $\hat{\boldsymbol{\theta}}$ and one of $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{y}$, $\hat{\mathbf{a}}_{z}$.

¹Each figure has two missing vectors (e.g., $\hat{\mathbf{n}}_x$ and $\hat{\mathbf{a}}_x$ are missing from the first figure). Use the fact that each set of vectors is **right-handed** to add the missing vectors to each figure.