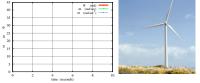
6.1 ♣ FE/EIT – Motion graph:

$$\mathbf{T} \stackrel{=}{=} \mathbf{I} \alpha \qquad \alpha = \frac{d\omega}{dt} \qquad \omega \stackrel{=}{=} \frac{d\theta}{dt}$$


A wind turbine generates electricity from a torque (created by wind forces) modeled as $T = 20 \frac{N \text{ m}}{\text{sec}} * t$. Equations relating the wind turbine's angular acceleration α , angular velocity ω , and angle θ are shown above, where moment of inertia $I = 80 \text{ kg m}^2$. Initially, (at t = 0), $\omega = 0$ and $\theta = 0$.

Determine $\alpha(t)$, $\omega(t)$, $\theta(t)$.

Result:

 $\alpha(t) = \frac{\Box}{\Box} \qquad \omega(t) = \frac{\Box}{\Box} \qquad \theta(t) = \frac{\Box}{\Box}$

Optional: Graph $\alpha(t)$, $\omega(t)$, and $\theta(t)$ for $0 \le t \le 10$ sec.

6.2 \$\text{ Draw a rigid body, center of mass, vector basis, and rigid frame. (Section 8.2.3)

Draw a *rigid body* B, shaped like a uniform-density doughnut (with a hole).

Draw a properly located *center of mass* symbol \bullet and label this point B_{cm} .

<u>Draw</u> a right-handed orthogonal **basis** fixed in B with unit vectors $\hat{\mathbf{b}}_1$, $\hat{\mathbf{b}}_2$, $\hat{\mathbf{b}}_3$.

<u>Draw</u> a *rigid frame* with *origin point* $B_{\rm o}$ (at a location different than $B_{\rm cm}$) and a right-handed orthogonal **basis** fixed in B with unit vectors $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{v}$, $\hat{\mathbf{b}}_{z}$.

ı	
ı	
ı	
ı	
ı	
ı	

6.3 \clubsuit Words and pictures for ${}^bR^a, {}^N\vec{\pmb{\omega}}^B, {}^N\vec{\pmb{\alpha}}^B$. (Chapters 5 and 8)

3D orthonormal basis | rigid body Complete each blank below with a phrase to the right. rotation matrix angular velocity angular acceleration

			
${}^aR^b$	R denotes	$^{N}\vec{\boldsymbol{\omega}}^{B}$ $\vec{\boldsymbol{\omega}}$ denotes	·
	a is a	$^{N}\vec{\boldsymbol{\alpha}}^{B}$ $\vec{\boldsymbol{\alpha}}$ denotes	
	b is a .	N is a	or or
		B is a	or or or
	Draw a and b .		$\mathbf{Draw}\ N$ and B .
]			
l i			
į			
l ¦	į		
	İ		
			'

6.4 ♣ Definition of angular velocity? (Section 8.3.3).

A popular definition of angular velocity is $\vec{\boldsymbol{\omega}} \triangleq \dot{\theta} \, \vec{\mathbf{k}}$. This definition is generally useful for calculating angular velocity and proving its properties (for both 2D and/or 3D analysis). True/False

6.5 A Textbook/Internet definition of 3D angular velocity (Section 8.3).

Renowned dynamicist Thomas Kane said angular velocity is one of the "most misunderstood concepts in kinematics." Report a definition of angular velocity and determine if the quantities appearing in the definition are rigorously defined - and whether the definition is generally applicable for 3D kinematics or only applies for simple angular velocity (e.g., $\vec{\boldsymbol{\omega}} = \dot{\theta} \, \vec{k}$ described in Section 8.3.3). Note: A definition should be able to prove important theorems [such as the angular velocity addition theorem of equation (8.4) and the golden rule for vector differentiation in equation (8.1)] and allow for angular velocity calculations.

Works for 3D Source (reference). Definition. Rigorously List textbook or .html link Report the defining equation/property. kinematics? defined? Yes/No Yes/No

6.6 Angular velocity of a Ferris-wheel seat (courtesy of David Levinson).

Known: The rigid seat on a Ferris wheel does not change its orientation relative to ground as the Ferris wheel rotates.

Decide: The seat's angular velocity $\vec{\boldsymbol{\omega}}$ relative to ground (circle one):

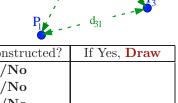
		. •	
Is zero	Is constant	Varies	Does not exist
$ec{oldsymbol{\omega}} = ec{f 0}$	$\vec{\boldsymbol{\omega}} = \vec{ ext{Constant}} \neq \vec{0}$	$\vec{\boldsymbol{\omega}} = \vec{\boldsymbol{\omega}}(t)$	

6.7 Concept: What objects have a unique angular velocity/acceleration? (Sections 8.3, 8.4).

The angular velocity $\vec{\boldsymbol{\omega}}$ of some object S relative to Earth is to be determined.

This object S could be a (circle all objects that have an unambiguously defined angular velocity $\vec{\omega}$):

Real number	Matrix	Set of points	Mass center of a rigid body
Vector	Point	Reference frame	Flexible body
3D orthogonal unit basis	Particle	3D rigid body	System of particles and bodies


Repeat for the angular acceleration $\vec{\alpha}$ of some object S relative to Earth box appropriate objects

6.8 \ What is a reference frame, rigid body, and orthogonal basis? (Sections 4.1 and 8.2)

	, , , , , , , , , , , , , , , , , , , ,	
#	Statement (regard "rigid body" as a massive 2D or 3D rigid object)	True or False?
a	A reference frame has all the attributes of a rigid body.	True/False
b	A rigid body has all the attributes of a reference frame.	True/False
c	A reference frame with time-invariant distributed mass is a rigid body.	True/False
d	The definition of a reference frame implies a sense of time.	True/False
е	A rigid body B has a uniquely-defined angular velocity in a reference frame N .	True/False
f	A point Q has a uniquely-defined angular velocity in a reference frame N .	True/False
g	The reference frame B implies unique orthogonal unit vectors $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{y}$, $\hat{\mathbf{b}}_{z}$.	True/False
h	The right-handed orthogonal unit vectors $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{y}$, $\hat{\mathbf{b}}_{z}$ imply a unique reference frame.	True/False
i	The reference frame B implies a unique rigid frame.	True/False
j	A rigid frame with origin $B_{\rm o}$ and basis $\hat{\mathbf{b}}_{\rm x}$, $\hat{\mathbf{b}}_{\rm y}$, $\hat{\mathbf{b}}_{\rm z}$ implies a unique reference frame.	True/False

6.9 ♣ Concept: Reference frames and vector bases. (Sections 4.1 and 8.2)

Consider 3 distinct non-collinear points P_1 , P_2 , P_3 and the non-zero distances d_{12}, d_{23}, d_{31} between them. In general, determine if each object below can always be constructed from P_1 , P_2 , P_3 under the listed condition. For each "Yes" answer, draw the object.

Condition	Object to be constructed	Object can be constructed?	If Yes, Draw
$d_{12}, d_{23}, d_{31} \text{ are constant}$	Vector basis that spans 3D space	${ m Yes/No}$	
$d_{12}, d_{23}, d_{31} \text{ are } \mathbf{variable}$	Vector basis that spans 3D space	${ m Yes/No}$	
$d_{12}, d_{23}, d_{31} \text{ are constant}$	Right-handed, orthogonal, unitary	basis Yes/No	
$d_{12}, d_{23}, d_{31} \text{ are } \mathbf{variable}$	Right-handed, orthogonal, unitary	basis Yes/No	
$d_{12}, d_{23}, d_{31} \text{ are constant}$	Unique reference frame	${ m Yes/No}$	
$d_{12}, d_{23}, d_{31} \text{ are } \mathbf{variable}$	Unique reference frame	${ m Yes/No}$	

6.10 ♣ Concepts: What objects have a uniquely-defined angular velocity? (Section 8.3).

-	· comcopusmac objec	oo mara			(2	, , , , , , , , , , , , , , , , , , , ,
8	a. The angular velocity of a	point	in a	reference frame	is well defined.	True/False
ł	o. The angular velocity of a	3D rigid body	in a	particle	is well defined.	True/False
(c. The angular velocity of a	3D rigid body	in a	reference frame	is well defined.	True/False
C	d. The angular velocity of a	reference frame	in a	3D rigid body	is well defined.	True/False
C	d. The angular velocity of a	3D rigid basis	in a	reference frame	is well defined.	True/False
ϵ	e. The angular velocity of a	reference frame	in a	flexible body	is well defined.	True/False
f	f. The angular velocity of a	flexible body	in a	reference frame	is well defined.	True/False