5.1 \$\ \text{Notations for derivatives (complete the blanks). (Section 1.6.1).}

Symbol for 1^{st} ,	2^{nd} , 3	rd de	rivative	Idea	Date Name of mathematician
	\dot{y}		\ddot{y}	Geometry/slope	1675
$\frac{d}{d}$	$\frac{y}{lt}$	$\frac{d^2y}{dt^2}$		Differentials	1675 (taught Bernoullis who tutored Euler)
3	y'			Functions	1797 Euler and (who was trained by Euler)
$\lim_{h \to 0} \frac{y(t+h) - y(t+h)}{h}$	y(t)	?	?	Limits delta-epsilon	1850 Cauchy (trained by Lagrange) 1872 Weierstrass
$\frac{\partial y}{\partial x}$		$\frac{\partial^2 y}{\partial x^2}$	$\frac{\partial^3 y}{\partial x^3}$		1786 Legendre (introduced partials, abandoned them) 1841 Jacobi (re-introduced partials again)

There was bitter rivalry between Newton and Leibniz about the concepts and notation for a derivative.

5.2 \clubsuit (1675 AD) Leibniz's shorthand notation for 3^{rd} derivatives. (Section 1.6.1).

Write the explicit expression for Leibniz's 3^{rd} derivative show right (so it contains three 1^{st} derivatives).

Write Leibniz's and Newton's shorthand expression for the 9^{th} derivative of y with respect to t.

5.3 4 (1675 AD) Newton's idea: Derivative as geometry (slope and curvature). (Section 1.6.1).

Newton related derivatives to geometry (1st-derivative as slope and 2nd-derivative as curvature). Estimate the slope of the function y(t) shown right at t = 0, 2, 4, 6.

Result: Pick your answers from: -1, 0, 1, 2

Slope $\frac{dy}{dt}\Big|_{t=0} \approx \frac{dy}{dt}\Big|_{t=2} \approx \frac{dy}{dt}\Big|_{t=2} \approx \frac{dy}{dt}\Big|_{t=6} \approx \frac{dy}{dt}\Big|_{t=6}$

Estimate the **sign** of the curvature $[2^{nd}$ -derivative of y(t)].

Result: Pick your answers from: <, \approx , >. Select \approx when the curvature ≈ 0 (i.e., $|\frac{d^2y}{dx^2}| < 0.01$).

Curvature $\begin{pmatrix} \frac{d^2y}{dt^2} \Big|_{t=0} & 0 & \frac{d^2y}{dt^2} \Big|_{t=2} & 0 & \frac{d^2y}{dt^2} \Big|_{t=4} & 0 & \frac{d^2y}{dt^2} \Big|_{t=6} & 0 \end{pmatrix}$

5.4 4 (1755 AD) Euler's idea: Derivative of a function is a function. (Section 1.6.5).

Differentiate the following functions that depend on t (time). Express results in terms of x, \dot{x} , t so the results are valid when x is constant or depends on time (e.g., when x = 9 or $x = t^3$ or $x = t^5$ or ...).

5.5 & Good product rule for differentiation – for scalars, vectors, [matrices], ... (Section 1.6.7). Circle the **good** product rule that works when u and v are scalars or $\vec{\mathbf{v}}$ ectors, or u is a $\mathbf{2} \times \mathbf{3}$ matrix

and v is a $\mathbf{3} \times \mathbf{5}$ matrix (if you did not learn the **good product rule**, update your calculus teacher).

$$\frac{d(u*v)}{dt} = \frac{du}{dt} * v + u * \frac{dv}{dt} \qquad \frac{d(u*v)}{dt} = u * \frac{dv}{dt} + v * \frac{du}{dt} \qquad \frac{d(u*v)}{dt} = v * \frac{du}{dt} + u * \frac{dv}{dt}$$

$$\frac{d(u*v)}{dt} = u*\frac{dv}{dt} + v*\frac{du}{dt}$$

$$\frac{d(u*v)}{dt} = v*\frac{du}{dt} + u*\frac{dv}{dt}$$

Knowing u, v, w are scalars or matrices that depend on time t, use the **good product rule for differentiation** to form the derivative of y(t) = u * v * w.

Good product rule: $\frac{dy}{dt} = \frac{d(u * v * w)}{dt} = \boxed{\quad } w + \boxed{\quad } w + u v \frac{dw}{dt}$

$$\frac{dy}{dt} = \frac{d(u * v * w)}{dt} =$$

$$w + u v \frac{du}{dt}$$

5.6 & Example of the "good product rule" for differentiation (if done right, takes $\approx 2 \text{ minutes}$). Differentiate the function f(t) with the easy-to-use good product rule for differentiation.

Function:

Hint: The "good product rule" is an efficient way to differentiate expressions with many factors.

- $+\sin(t)$
- 5.7 Alternative to quotient rule: combine product/exponent rules. (Section 1.6.8).

Although the **quotient rule** can be used to differentiate the ratio of functions f(t) and g(t), it can be easier to remember $\frac{f(t)}{g(t)} = f(t) * g(t)^{-1}$ and then use the **product rule** as shown below.

Given example: $\frac{\sin(t)}{t} = \sin(t) * t^{-1}$ $\frac{d}{dt} [\sin(t) * t^{-1}] = \cos(t) t^{-1} - \sin(t) t^{-2}$ Complete this: $\frac{\sin(t)}{t^2} = \sin(t) * t$ $\frac{d}{dt} [\sin(t) * t^{-1}] = \frac{1}{t^2}$

5.8 \clubsuit Chain rule for differentiation. $\frac{df[x(t)]}{dt} = \frac{df}{dx}\frac{dx}{dt}$ $\frac{df[x,y]}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$ (Sections 1.6.9, 1.6.4).

Differentiate the function f(t) with the **chain rule** [x(t)] and y(t) depend on the independent variable t (time)].

5.9 \clubsuit Ordinary derivative of the function $f(t) = \sin(t) * \cos(x y z)$. (Sections 1.6.7 and 1.6.9).

Differentiate the function f(t) with respect to t [x(t), y(t), z(t) depend on the independent variable t (time)].

332

Result: $\frac{d \left[\sin(t) \cos(x y z)\right]}{dt} =$

5.10 & Differentiation concepts. (Section 1.6.10 – implicit differentiation).

The equation to the right relates the dependent variable y(t) to the independent variable t. Find two real roots to this equation when t = 0.

 $y^4 - 8y = 3t^2 + \sin(t)$ Roots: y = 0, y = 0, $y \approx -1 \pm 1.732 i$

Form a general expression for $\frac{dy}{dt}$ in terms of y and t and calculate $\frac{dy}{dt}$ when t=0 and y=2.

Result:

Fult:
In terms of
$$\frac{dy}{dt} = \frac{1}{1}$$
Numerical $\frac{dy}{dt}\Big|_{\substack{t=0 \ y=2}} = \frac{1}{1}$

$$\frac{dy}{dt}\Big|_{\substack{t=0\\y=2}} = \frac{1}{}$$

†Optional: Continuous solution of nonlinear algebraic equation.

Starting with y=2, continuously solve for y(t) for $0 \le t \le 40$ and plot your results as shown right. Stumped: See hint in Homework 5.32.

5.11 & Review of explicit and implicit differentiation. (Section 1.6.10).

The figure to the right shows a point Q on a cylindrical helix. Two geometrically significant quantities are a distance λ and an angle ϕ that are related to two **constants** R and β by

$$\lambda^2 = R^2 + (\beta \theta)^2$$
 $\tan(\phi) = \frac{\beta \theta}{R}$

$$\tan(\phi) = \frac{\beta \theta}{R}$$

Form $\dot{\lambda}$ and $\dot{\phi}$ using the two methods described below.

- **Explicit differentiation** 1. Solve explicitly for λ and ϕ .
 - **2**. Then differentiate the resulting expressions.

Result:

In terms of R, β , θ , $\dot{\theta}$.

$$\lambda = \sqrt{R^2 + (\beta \theta)^2}$$
 $\phi = \operatorname{atan}(\frac{\beta \theta}{R})$ Hint: $\frac{\partial \operatorname{atan}(x)}{\partial x} = \frac{1}{1 + x^2}$

βθ

$$\dot{\lambda} = \frac{\dot{\theta}}{\dot{\theta}}$$

$$\dot{\phi} = \frac{\dot{\phi}}{\dot{\phi}}$$

- **Implicit differentiation** 1. Differentiate the equations for λ^2 and $\tan(\phi)$.
 - **2**. Then solve for λ and ϕ .

Result:

In terms of R, β , θ , $\dot{\theta}$, λ .

$$\dot{\lambda} = \frac{\dot{\theta}}{1}$$

$$\dot{\phi} = \frac{\dot{\theta} R}{\lambda^2} \dot{\theta}$$

Forming $\dot{\lambda}$ is easier and computationally more efficient with **explicit/implicit** differentiation.

5.12 A Review of partial and ordinary differentiation. (Section 1.6.2).

The kinetic energy K of a bridge-crane (shown right) can be written in terms of constants M, m, L and variables $x, \dot{x}, \theta, \dot{\theta}$, as

$$K \; = \; \textstyle \frac{1}{2} \, M \, \dot{x}^2 \; \; + \; \; \textstyle \frac{1}{2} \, m \, [L^2 \, \dot{\theta}^2 + 2 \, L \, \cos(\theta) \, \dot{x} \, \dot{\theta}]$$

- First, regard $x, \dot{x}, \theta, \dot{\theta}$ as independent variables [so K depends on each separately, i.e., $K(x, \dot{x}, \theta, \dot{\theta})$], form the **partial derivatives** below (left).
- Next, regard x, \dot{x} , $\dot{\theta}$, $\dot{\theta}$ as time-dependent variables and form the ordinary derivatives below (right).

The mathematical process below is used in Lagrange's equations of motion.

5.13 ♣ Differentiation concepts – what is wrong? (Section 1.6.3 and previous problem).

The scalar v measures a baseball's upward-velocity. Knowing v=0 only when the ball reaches maximum height, explain what is wrong with the following statement about v's time derivative.

$$\frac{dv}{dt} = \frac{d(0)}{dt} = 0$$
 is wrong. We know the correct answer is: $\frac{dv}{dt} = -g \approx -9.8 \frac{\text{m}}{\text{s}^2}$.

Explain what is wrong: It is incorrect to time-differentiate as shown above because:

5.14 Leibniz's idea and differentiation concepts: What is dt? (Section 1.6.1).

A continuous function z(t) depends on x(t), y(t), and time t as: $z = x + y^2 \sin(t)$ At a certain instant of time, y = 1 and z simplifies to:

Determine the time-derivative of z at the instant when y = 1.

Result:

$$\frac{dz}{dt}\Big|_{y=1} = \Box$$

5.15 & Euler's idea: Integral of a function is a function. (Section 1.7).

Calculate the following indefinite integrals in terms of an indefinite constant C (regard t as positive).

Result:

$$\int t^2 dt = + C$$

$$\int t^8 dt = \boxed{} + \boxed{}$$

$$\int t^{-3} dt = + C$$

$$\int t^{-3} dt = + C \qquad \int t^{-2} dt =$$

$$\int \sin(t) dt = \int \cos(t) dt =$$

$$\int t^{-1} dt =$$

$$\int e^t dt =$$

$$\int \sin(t) dt =$$

$$\int \cos(t) dt =$$

$$\int e^t dt =$$

$$\int 5 dt =$$

$$\int 5/t \ dt =$$

$$\int 5 dt = \int (5 + \frac{1}{t}) dt = \int (5 + \frac{1}{t}) dt = \int (5 + \frac{1}{t}) dt$$

5.16 Solve a 1st-order ODE: Separate variables, integrate, initial value. (Section 1.7).

Solve $\frac{dv}{dt} =$ -9.8 $\frac{\text{m}}{\text{s}^2}$ with the initial value $v(t=0) = 33 \frac{\text{m}}{\text{s}}$.

5.17 Solve a 2^{nd} -order ODE: Separate variables, integrate, initial value (twice). (Section 1.7).

Solve $\frac{d^2y}{dt^2} = -9.8 \frac{\text{m}}{\text{s}^2}$ with initial values $\dot{y}(t=0) = 33 \frac{\text{m}}{\text{s}}$, y(t=0) = 5 m. Show work

Result: $y(t) = \frac{1}{t} + \frac{1}{t} +$

5.18 \clubsuit Solve a 3^{rd} -order ODE with mixed initial/boundary values. (Section 1.7).

Solve $\frac{d^3y}{dt^3} = 6$ with initial/boundary values y(t=0) = 5, $\dot{y}(t=0) = 0$, y(t=3) = 50.

Result: $y(t) = \frac{d^3y}{dt^3} \triangleq \frac{d}{dt} \left(\frac{d}{dt} \left(\frac{dy}{dt}\right)\right)$. Then integrate three times.

$$y(t) =$$

Hint:
$$\frac{d^3y}{dt^3} \triangleq \frac{d}{dt} \left(\frac{d}{dt} \left(\frac{dy}{dt} \right) \right)$$
. Then integrate three times.

5.19 & Geometric interpretations of integrals and derivatives. (Section 1.7).

• Complete the blanks and graph the missing functions. Blanks should not have undetermined constants. Hint: Synthesize information from each vertical column below. Constants of integration can be deduced from graphs. For example, for the 2^{nd} column, start at the bottom with $\frac{d^2x}{dt^2} = 0$ and work upward to determine $\frac{dx}{dt}$ and then x(t).

• A rocket-sled/rider is modeled as a particle of mass m whose motion is affected by thrust, normal, and gravity forces. Draw its $free-body\ diagram$ and write the net force \vec{F}_{Ngt} in terms of scalars $F_{\rm T},\ F_{\rm n},\ m\,g$ (associated with thrust, normal force, gravity force) and the unit vectors $\hat{\bf i}$ and $\hat{\bf j}$.

Result:
$$\vec{\mathbf{F}}_{Net} = \widehat{\mathbf{i}} + (\widehat{\mathbf{j}})$$

• Set $\vec{\mathbf{F}}_{\text{Net}} = m \, \vec{\mathbf{a}}$, form scalar equations, solve for \ddot{x} , F_{n} .

Thrust $\vec{\mathbf{F}}_{\mathrm{T}} = \widehat{\mathbf{i}}$ $\begin{array}{c|c} \text{Normal } \vec{\mathbf{F}}_{\text{n}} = \boxed{F_{\text{n}}} \\ \hline \text{Gravity } \vec{\mathbf{F}}_{g} = \boxed{\hat{\mathbf{j}}} \\ \hline \vec{\mathbf{F}}_{\text{Net}} = \vec{\mathbf{F}}_{\text{T}} + \vec{\mathbf{F}}_{\text{n}} + \vec{\mathbf{F}}_{g} \end{array}$

• Given m = 100 kg, $F_T = 800 \text{ Newton}$, x(t=0) = 7 m, $\dot{x}(t=0) = 0 \frac{\text{m}}{\text{s}}$, show $x(t) = 4t^2 + 7$

5.20 \clubsuit FE/EIT: $\vec{\mathbf{F}} = m\vec{\mathbf{a}}$ for a sky-diver and rocket-sled. (complete the blanks, graphs, etc).

A sky-diver (modeled as a particle Q of mass m) free-falls for 4 seconds after leaving a stationary helicopter from a height y(0) = 200 m above Earth (y is positive-upward).

FBD: Draw *Q*'s *free-body diagram* and write the net force on the sky-diver (assume gravity is the only relevant force).

Result: $\vec{\mathbf{F}}_{\mathrm{Net}} = \mathbf{\hat{j}}$

Sketch particle Q, Earth's surface N, a point N_o on N, y(t), y(0), and the helicopter. Form $\vec{\mathbf{r}}$, the position vector from N_o to Q. Differentiate $\vec{\mathbf{r}}$ to form Q's velocity $\vec{\mathbf{v}}$ and acceleration $\vec{\mathbf{a}}$.

Result: $\vec{\mathbf{r}} = \mathbf{v} = \mathbf{j}$ $\vec{\mathbf{v}} = \mathbf{j}$ $\vec{\mathbf{a}} = \mathbf{j}$ $\vec{\mathbf{j}}$ in terms of y \dot{y} , \ddot{y}

Set $\vec{\mathbf{F}}_{\text{Net}} = m \, \vec{\mathbf{a}}$, form scalar equation, solve for \ddot{y} .

A rocket-sled/rider (modeled as a particle Q of mass m) is thrust along smooth rails with a force F_T .

The variable x measure's the sled's position along the inclined rails. Initially, x = 5 m and $\dot{x} = 0$ $\frac{\text{m}}{\text{m}}$.

Unit vector $\hat{\mathbf{t}}$ is tangent to the rails. Unit vector $\hat{\mathbf{n}}$ is normal to the rails.

FBD: Draw the forces and write the net force on the rocket-sled/rider.

 $\begin{array}{lll} \textbf{Result:} & \vec{\mathbf{F}}_{\mathrm{Net}} = \underline{} \hat{\mathbf{t}} + \underline{} \hat{\mathbf{n}} - \underline{} \hat{\mathbf{j}} \end{array}$

Form Q's position vector, velocity, and acceleration (in terms of x, \dot{x} , \ddot{x}).

Result: $\vec{\mathbf{r}} = \mathbf{v} \hat{\mathbf{t}}$ $\vec{\mathbf{v}} = \mathbf{v} \hat{\mathbf{t}}$ $\vec{\mathbf{a}} = \mathbf{v} \hat{\mathbf{t}}$

Set $\vec{\mathbf{F}}_{Net} = m \, \vec{\mathbf{a}}$, form scalar equations, solve for \ddot{x} , F_n .

 $\ddot{x} = \frac{1}{1 - 1} - \sin(\theta)$ $F_n = \cos(\theta)$ F_n measures normal force.

