8.1 Velocity and acceleration of a wheel sliding on a plane (Section 9.8).

The following shows a wheel B of radius R in contact with a horizontal road N.
Point N_o is fixed on N.
Point B_o is the wheel’s geometric center.
Point B_1 is fixed to B at the wheel’s periphery.

Right-handed orthogonal unit vectors \hat{n}_x, \hat{n}_y, \hat{n}_z and \hat{b}_x, \hat{b}_y, \hat{b}_z are fixed in N and B, with
- \hat{n}_x horizontally-right
- \hat{n}_y vertically-upward
- $\hat{n}_z = \hat{b}_z$ parallel to B’s angular velocity in N
- \hat{b}_y directed from B_0 to B_1

B’s translation in N is characterized by x, the \hat{n}_x measure of B_o’s position from N_o.
B’s rotation in N is characterized by θ, the angle from \hat{n}_y to \hat{b}_y with $-\hat{n}_z$ sense.

Succinctly answer each question in terms of R, x, \dot{x}, \ddot{x}, θ, $\dot{\theta}$, \hat{n}_x, \hat{n}_y, \hat{n}_z, \hat{b}_x, \hat{b}_y, \hat{b}_z.

(a) Determine B’s angular velocity in N and B’s angular acceleration in N.
 Use definitions to calculate B_o’s velocity in N and B_1’s velocity in N.
 Result:
 \[
 \begin{align*}
 N\omega^B & = \boxed{} \quad N\alpha^B = \boxed{} \\
 N\dot{\omega}^B_o & = \boxed{} \quad N\ddot{\omega}^B_1 = \boxed{\hat{n}_x + \hat{b}_x}
 \end{align*}
 \]

(b) Find B_1’s velocity and acceleration in N at the **instant** when B_1 is in contact with N.
 Result:
 \[
 \begin{align*}
 N\dot{\omega}^B_{1\text{contact}} & = (\boxed{-} \boxed{0}) \hat{n}_x \\
 N\ddot{\omega}^B_{1\text{contact}} & = (\boxed{-} \boxed{0}) \hat{n}_x + \boxed{\hat{n}_y}
 \end{align*}
 \]

(c) Point B_N designates the point of B that is in contact with N at each **instant**.
 Provide a formula relating $N\dot{\omega}^B_{N\text{contact}}$ to $N\dot{\omega}^B_0$ [this formula should not contain a derivative and uses the fact that B_o and B_N are both points of (fixed on) B]. Then, express $N\dot{\omega}^B_{N\text{contact}}$ in terms of R, \dot{x}, \ddot{x}.
 Similarly, provide a derivative-free formula relating $N\alpha^B_{N\text{contact}}$ to $N\alpha^B_0$ and then calculate $N\alpha^B_{N\text{in contact}}$.
 Result: (this is a quicker method for calculating the previous results)
 \[
 \begin{align*}
 N\dot{\omega}^B_{N\text{contact}} & = N\dot{\omega}^B_0 + \boxed{R} \times \boxed{R} \hat{n}_x = (\boxed{-} \boxed{0}) \hat{n}_x \\
 N\alpha^B_{N\text{contact}} & = N\alpha^B_0 + \boxed{R} \times \boxed{R} \hat{n}_x + \boxed{R} \hat{n}_y = (\ddot{x} - \dot{\theta} \hat{b}_y) \hat{n}_x + \hat{b}_y \dot{\theta} R \hat{n}_y
 \end{align*}
 \]

(d) Point B_N’s position vector from N_o is **always** $\vec{r}^{B_N/N_o} = x \hat{n}_x$.
 Why is your previous result for $N\dot{\omega}^B_{N\text{in contact}}$ **not** the time-derivative in N of $\dot{\hat{r}}^{B_N/N_o}$?
 Why is your previous result for $N\alpha^B_{N\text{in contact}}$ **not** the time-derivative in N of $\dot{N}\vec{r}^{B_N}$?
 \[
 \begin{align*}
 N\dot{\omega}^B_{N\text{in contact}} & = (\ddot{x} - \dot{\theta} \hat{b}_y) \hat{n}_x \\
 N\alpha^B_{N\text{in contact}} & = (\ddot{x} - \dot{\theta} \hat{b}_y) \hat{n}_x + \hat{b}_y \dot{\theta} R \hat{n}_y
 \end{align*}
 \]

Explain:
8.2 FE/EIT Review – Velocity and acceleration of a wheel rolling on a plane (Section 9.8).

A thin wheel B of radius R remains in friction contact with a flat horizontal road N.

B has a simple angular velocity parallel to \hat{n}_z (\hat{n}_z is perpendicular to the circular portion of B).

The point of B in contact with N at each instant is denoted B_N. The point of N in contact with B at each instant is N_B.

Answer questions below with symbols from Homework 8.1, (e.g., R, θ, $\dot{\theta}$, $\ddot{\theta}$, \hat{n}_x, \hat{n}_y, \hat{n}_z).

(a) Write the vector definition of rolling between N and B. Use it to relate \dot{x} to R, $\dot{\theta}$.

Result:

(b) If B continuously rolls on N, can $\dot{x} = R \dot{\theta}$ be differentiated to calculate $\ddot{x} = R \ddot{\theta}$. Yes/No.

For continuous rolling, solve for $x(t)$ in terms of $\theta(t)$ and the initial value $x(0)$ (value of x at $t = 0$).

Result: [use $\theta(0) = 0$]

(c) Calculate the following. Herein, regard B_1 as the point of B at the top of the wheel ($\theta = 0$). Next, draw the velocities and accelerations on the wheel when $\ddot{\theta}$ is constant ($\ddot{\theta} = 0$).

Result: (Express results solely in terms of R, $\dot{\theta}$, $\ddot{\theta}$, \hat{n}_x, \hat{n}_y, \hat{n}_z - without x, \dot{x}, \ddot{x}.)

Answer the following. Assume continuous rolling or sliding. Assume non-zero motion of B in N (either $\dot{\theta} \neq 0$ or $\dot{x} \neq 0$).

- When B rolls on N, the velocity of B_N in N must be zero. True/False
- When B slides on N, the velocity of B_N in N must be zero. True/False
- When B rolls on N, the acceleration of B_N in N can be zero. True/False
- When B slides on N, the acceleration of B_N in N can be zero. True/False

† Prove your previous answer: If $\ddot{a}^{BN} = \ddot{a}$, can B continuously slide on N? Determine $\dot{\theta}$, $\ddot{\theta}$, \dot{x}, \ddot{x}.

Result: $\dot{\theta}(t) = \ddot{\theta}(t) = \ddot{x}(t) = \dddot{x}(t) = \dddot{x}$ (Slides? Yes/No)