10.1 Velocity and acceleration of a wheel sliding on a plane (Section 11.12).

The figure shows a wheel B of radius R in contact with a horizontal road N.

Point N_0 is fixed on N.

Point B_0 is the wheel's geometric center.

Point B_1 is fixed to B at the wheel's periphery.

Right-handed orthogonal unit vectors $\widehat{\mathbf{n}}_{\mathrm{x}},\; \widehat{\mathbf{n}}_{\mathrm{y}},\; \widehat{\mathbf{n}}_{\mathrm{z}}$ and $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{v}$, $\hat{\mathbf{b}}_{z}$ are fixed in N and B, with

- $\hat{\mathbf{n}}_z = \hat{\mathbf{b}}_z$ parallel to B's angular velocity in N.
- \mathbf{b}_{v} directed from B_{o} to B_{1} .

B's translation in N is characterized by x, the $\hat{\mathbf{n}}_{x}$ measure of B_{o} 's position from N_{o} . B's rotation in N is characterized by θ , the angle from $\hat{\mathbf{n}}_{\mathbf{v}}$ to $\hat{\mathbf{b}}_{\mathbf{v}}$ with $-\hat{\mathbf{n}}_{\mathbf{z}}$ sense.

(a) Determine B's angular velocity in N and B's angular acceleration in N.

Result:

$${}^{N}\vec{\boldsymbol{\omega}}^{B}=\widehat{\mathbf{n}}_{\mathbf{z}}$$

$${}^{N}\vec{oldsymbol{lpha}}{}^{B}=$$
 - $\ddot{ heta}\,\widehat{\mathbf{n}}_{\mathbf{z}}$

(b) Form B_0 's position from N_0 and B_1 's position from N_0 . Use **definitions** to calculate B_0 's velocity and acceleration in N and B_1 's velocity and acceleration in N.

$$^{N}\mathbf{\vec{v}}^{^{B_{\mathrm{o}}}}=rac{\square}{\widehat{\mathbf{n}}_{\mathrm{x}}}$$

$$^{N}\vec{\mathbf{a}}^{B_{\mathrm{o}}}=\boxed{\widehat{\mathbf{n}}_{\mathrm{x}}}$$

$$+$$
 $\hat{\mathbf{b}}_{\mathbf{v}}$ $\hat{\mathbf{b}}_{\mathbf{v}}$

(c) Find B_1 's velocity and acceleration in N at the **instant** when B_1 is in contact with N.

Result:

$$N\vec{\mathbf{v}}^{B_1}\Big|_{\mathrm{contact}} = (\boxed{ } - \boxed{ }) \, \widehat{\mathbf{n}}_{\mathrm{x}} \qquad N\vec{\mathbf{a}}^{B_1}\Big|_{\mathrm{contact}} = (\boxed{ } - \boxed{ }) \, \widehat{\mathbf{n}}_{\mathrm{x}} \, + \boxed{ }$$

$${}^{N}\vec{\mathbf{a}}^{B_{1}}\Big|_{\mathrm{contact}} = (\Box - \Box$$

$$)\,\widehat{\mathbf{n}}_{\mathrm{x}}\,+$$

(d) Point B_N designates the point of B that is in contact with N at each instant. Relate ${}^{N}\vec{\mathbf{v}}^{B_{N}}$ to ${}^{N}\vec{\mathbf{v}}^{B_{o}}$ with a formula that does not contain a derivative and uses the fact that both B_0 and B_N are points of (fixed on) B. Then, express ${}^{N}\vec{\mathbf{v}}^{B_N}$ in terms of $R, \dot{x}, \dot{\theta}$. Similarly, provide a derivative-free formula relating ${}^{N}\vec{\mathbf{a}}^{B_{N}}$ to ${}^{N}\vec{\mathbf{a}}^{B_{o}}$ and then calculate ${}^{N}\vec{\mathbf{a}}^{B_{N}}$. Result: [Hint: Eqns (10.3, 10.4) are efficient formulas for velocity/acceleration of two-points fixed on a body].

 ${}^{N}\vec{\mathbf{v}}^{B_{N}} = {}^{N}\vec{\mathbf{v}}^{B_{o}} +$ imes = (- $) <math>\hat{\mathbf{n}}_{\mathrm{x}}$ (derivative may not mean what you think) $^{N}\vec{\mathbf{a}}^{B_{N}} \stackrel{N}{=} {^{N}}\vec{\mathbf{a}}^{B_{0}} + \times + \times + = (\ddot{x} - R \ddot{\theta}) \hat{\mathbf{n}}_{x} + \dot{\theta}^{2} R \hat{\mathbf{n}}_{y}$

(e) Point B_N 's position vector from N_0 is **always** $N_0 \vec{\mathbf{r}}^{B_N} = x \hat{\mathbf{n}}_x$. Explain why ${}^{N}\vec{\mathbf{v}}^{B_N} \neq \frac{{}^{N}d\left({}^{N_0}\vec{\mathbf{r}}^{B_N} = x\,\widehat{\mathbf{n}}_{\mathbf{x}}\right)}{dt}$ and ${}^{N}\vec{\mathbf{a}}^{B_N} \neq \frac{{}^{N}d\,{}^{N}\vec{\mathbf{v}}^{B_N}}{dt}$

Explain:

- The symbols B_N and B_1 sometimes designate the same point. True/False
- Point B_1 is always the name of the same (one) specific point of B. True/False
- (f) \bullet Point B_N is always the name of the same (one) specific point of B. True/False
 - Point B_N is **continuously renamed** as B rotates in N. True/False
 - When B_1 is in contact with N, $|\vec{\mathbf{v}}^{B_1}|_{\text{contact}}$ has the same meaning as $|\vec{\mathbf{v}}^{B_N}|$. True/False
- (g) Calculate $N_{\rm o}$'s velocity and acceleration in B.

(h) Point N_B designates the point of \underline{O} N that is in contact with B at each instant. Determine N_B 's velocity and acceleration in B.

(i) The **path point** P is the point in space that continuously traces out contact between B and N. Determine P's velocity and acceleration in N and P's velocity and acceleration in B.

Result: ${}^{N}\vec{\mathbf{v}}^{P} = \widehat{\mathbf{n}}_{x}$ ${}^{N}\vec{\mathbf{a}}^{P} = \ddot{x}\,\widehat{\mathbf{n}}_{x}$ ${}^{B}\vec{\mathbf{v}}^{P} = \widehat{\mathbf{n}}_{x}$ ${}^{B}\vec{\mathbf{a}}^{P} = R\,\ddot{\theta}\,\widehat{\mathbf{n}}_{x} + R\,\dot{\theta}^{2}\,\widehat{\mathbf{n}}_{y}$

As defined, the existence of path point P depends on contact between B and N. If contact ceases, point P ceases to exist.

(j) $Points B_N \text{ and } N_B$ never/sometimes/always designate the same point.

• Points B_N and N_B are never/sometimes/always coincident (co-located).

• Points B_N and P never/sometimes/always designate the same point.

• Points B_N and P never/sometimes/always coincident (co-located).

10.2 FE/EIT - Velocity and acceleration of a wheel rolling on a plane (Section 11.12).

Due to friction, a thin wheel B of radius R rolls on a flat horizontal road N.

The point $\underline{\mathbf{of}}\ B$ in contact with N at each instant is denoted B_N . The point $\underline{\mathbf{of}}\ N$ in contact with B at each instant is N_B .

Answer questions with symbols from Hw 10.1 $(R, \theta, \dot{\theta}, \ddot{\theta}, \dot{x}, \hat{\mathbf{n}}_{x}, \hat{\mathbf{n}}_{y}, \hat{\mathbf{n}}_{z})$. Note: ${}^{N}\vec{\boldsymbol{\omega}}^{B} = -\dot{\theta}\,\hat{\mathbf{n}}_{z}\,(\hat{\mathbf{n}}_{z})$ is perpendicular to the circular portion of B).

- (a) Write the vector definition of **rolling** between N and B. Use it to relate \dot{x} to R, $\dot{\theta}$. Result: $\begin{vmatrix} \vec{\mathbf{v}} & \Rightarrow & \dot{x} = \\ & &$
- (b) If B continuously rolls on N, can $\dot{x} = R\dot{\theta}$ be differentiated to calculate $\ddot{x} = R\ddot{\theta}$. Yes/No. For continuous rolling, solve for x(t) in terms of $\theta(t)$ and the initial value x(0) (value of x at t = 0). Result: [use $\theta(0) = 0$] $x(t) = x(0) + \frac{1}{2}$
- (c) Calculate the following. Herein, regard B_1 as the point of B at the top of the wheel $(\theta = 0)$. Next, **draw** the velocities and accelerations on the wheel when $\dot{\theta}$ is constant $(\ddot{\theta} = 0)$. **Result:** [Hint: Eqns (10.3, 10.4) are **efficient** formulas for velocity/acceleration of two-points fixed on a body].

Velocity diagram

Notice \mathbf{r} in terms of R, $\dot{\theta}$, $\ddot{\theta}$.

Notice \mathbf{r} in terms of R, $\dot{\theta}$, $\ddot{\theta}$.

Notice \mathbf{r} in terms of R, $\dot{\theta}$, $\ddot{\theta}$.

Notice \mathbf{r} in terms of R, $\dot{\theta}$, $\ddot{\theta}$.

Notice \mathbf{r} in terms of R, $\dot{\theta}$, $\ddot{\theta}$.

Notice \mathbf{r} in terms of R, $\dot{\theta}$, $\ddot{\theta}$.

Notice \mathbf{r} in terms of R, $\dot{\theta}$, $\ddot{\theta}$.

Notice \mathbf{r} in terms of R, $\dot{\theta}$, $\ddot{\theta}$.

Notice \mathbf{r} in terms of R, $\dot{\theta}$, $\ddot{\theta}$.

Notice \mathbf{r} in terms of R, $\dot{\theta}$, $\ddot{\theta}$.

Notice \mathbf{r} in terms of \mathbf{r} in \mathbf{r} in