11.1 & Velocity variables and degrees of freedom (Section 11.1).

Determine the minimum number of unknown **velocity variables** necessary to characterize the motion of the following systems in a reference frame N. Regard Q as a free-flying particle and A as a rigid body that is **free** to translate and rotate in 3D-space. Choose and **define** velocity variables that suffice to describe the motion (Note: The choice of velocity variables is **not unique**).

Optional: Sketch each system with names for each point/body.

System $(Q, B, \text{ or } A \text{ and } B)$	Degrees of freedom	
Free-flying particle Q .	3	
Particle Q moving in a slot (slot is parallel to a uni	t vector $\vec{\mathbf{n}}$).	$\mathbf{\vec{v}}^{\mathbf{q}} = v_x \mathbf{\hat{n}}_{\mathbf{x}} + v_y \mathbf{\hat{n}}_{\mathbf{y}} + v_z \mathbf{\hat{n}}_{\mathbf{z}}$
Free-flying rigid body B .	6	$ \begin{array}{l} \omega_{x} \ \omega_{y} \ \omega_{z} \ v_{x} \ v_{y} \ v_{z} \\ {}^{N} \vec{\boldsymbol{\omega}}^{B} = \omega_{x} \hat{\mathbf{b}}_{x} + \omega_{y} \hat{\mathbf{b}}_{y} + \omega_{z} \hat{\mathbf{b}}_{z} \\ {}^{N} \vec{\mathbf{v}}^{B_{o}} = v_{x} \hat{\mathbf{n}}_{x} + v_{y} \hat{\mathbf{n}}_{y} + v_{z} \hat{\mathbf{n}}_{z} \end{array} $
Rigid body B connected to rigid body A by a rev $(A \text{ connects to } B \text{ at point } A_B \text{ of } A)$	olute joint. 7	$egin{array}{lll} & \omega_x & \omega_y & \omega_z & v_x & v_y & v_z & \omega_B \ ^N ec{oldsymbol{\omega}}^A &= \omega_x \widehat{\mathbf{a}}_{\mathrm{x}} + \omega_y \widehat{\mathbf{a}}_{\mathrm{y}} + \omega_z \widehat{\mathbf{a}}_{\mathrm{z}} \ ^N ec{\mathbf{v}}^{A_B} &= v_x \widehat{\mathbf{a}}_{\mathrm{x}} + v_y \widehat{\mathbf{a}}_{\mathrm{y}} + v_z \widehat{\mathbf{a}}_{\mathrm{z}} \ ^A ec{oldsymbol{\omega}}^B &= \omega_B \widehat{oldsymbol{\lambda}} \end{array}$
Rigid body B connected to rigid body A by a rigid	d joint.	
Rigid body B connected to A by a ball-and-socke	t joint.	
Rigid body B connected to A by a revolute angul	ar velocity motor.	
(A revolute angular velocity motor <u>specifies</u> B's angular v	elocity in A)	
Rectangular box B sliding on a flat rigid surface for $(B \text{ contacts } N \text{ at a single vertex } B_0 \text{ of } B)$	fixed in N .	
Rectangular box B sliding on a flat rigid surface f	fixed in N .	
(B contacts N on a single edge of B. The edge is pa		
(Flat surface is perpendicular to $\hat{\mathbf{n}}_{z}$)		
Rectangular box B sliding on a flat rigid surface f	fixed in N .	
(B contacts N on one surface of B)		