16.1 ♣ Two types of forces in a free-body diagram (FBD) (Section 18.6).

From an engineering/FBD perspective, the two types of forces are and

16.2 \clubsuit What is 1 Newton and 1 lb_f? (Section 21.1).

1 Newton is defined as (circle all that apply)	$1 \frac{\text{kg m}}{\text{s}^2}$	$9.81 \frac{\text{kg m}}{\text{s}^2}$	$\frac{m}{2}$ None of these
1 lb_f is defined as or	$1 \text{ kg} \cdot \frac{\text{m}}{\text{s}^2}$	$1 \text{ slug} \cdot \frac{\text{ft}}{\text{s}^2}$	$1 \text{ lb}_{\text{m}} \cdot \frac{\text{ft}}{\text{s}^2}$
approximately equal to	$9.81 \text{ kg} \cdot \frac{\text{m}}{\text{s}^2}$	$9.81 \text{ slug} \cdot \frac{\text{ft}}{\text{s}^2}$	$9.81 \text{ lb}_{\text{m}} \cdot \frac{\text{ft}}{\text{s}^2}$
(circle all that apply)	$32.2 \text{ kg} \cdot \frac{\text{m}}{\text{s}^2}$	$32.2 \text{ slug} \cdot \frac{\text{ft}}{\text{s}^2}$	$32.2 \text{ lb}_{\text{m}} \cdot \frac{\text{ft}}{\text{s}^2}$

Using the exact Section 21.1 NIST conversion factor for lbm to kg and the exact conversion factor 1 inch $\triangleq 2.54$ cm, show how to calculate the conversion factor for lbf to Newton.

16.3 ♣ Force concepts (Section 18.3).

A force is a well-defined quantity:

True/False
The resultant of a set of forces is a force.

In the SI (metric) system, the units of force are:

In the SI (metric) system, the units of impulse are: $\vec{\mathbf{F}} = m\vec{\mathbf{a}}$ is violated if a non-zero forces exists without the presence of a massive object $\vec{\mathbf{F}} = m\vec{\mathbf{a}}$ is violated if mass exists without the presence of force

True/False

16.4 ♣ Law of action/reaction (Section 18.1).

Circle the forces that obey the *law of action/reaction*. **Explain** why each pair obeys/disobeys.

16.5 ♣ Coulomb's friction law (Section 21.6).

The range for Coulomb's *coefficient of static friction* is always $0 \le \mu_s \le 1$. True/False. Coulomb's friction law is exact/accurate (< 1% error)/approximate/completely wrong.

16.6 ♣ Force and mass concepts (Section 21.1).

The center of mass and center of gravity may be different points.	True/False
The center of gravity of a rigid body always exists.	${\it True/False}$
For $\vec{\mathbf{F}} = m \vec{\mathbf{a}}$ to be valid, the m in mg must be exactly equal to the m in $m\vec{\mathbf{a}}$.	
For Einstein's relativity to be valid, the m in mg must be exactly equal to the m in $m\vec{\mathbf{a}}$.	
For modern string theory to be valid, the m in mg must be exactly equal to the m in $m\vec{\mathbf{a}}$.	

16.7 ♣ Convert U.S. units of psi to SI units of Pascals and estimate stress (Section 21.1).

Use <u>each</u> conversion factors (number) below at <u>least once</u> (and others you should know) to convert units of 1 inch to \boldsymbol{z} meters, 1 lbf (pound-force) to \boldsymbol{y} Newtons, and 1 psi $(\frac{lbf}{inch^2})$ to \boldsymbol{z} Pascals $(\frac{N}{m^2})$. Express results for \boldsymbol{z} in terms of the intermediate conversion factors \boldsymbol{x} and \boldsymbol{y} .

 $1 \text{ inch } \triangleq 2.54 \text{ cm}$

 $1 \text{ kg} \approx 2.2 \text{ lbm}$

 $1 \text{ g}_{\text{Earth}} \approx 32.2 \frac{\text{ft}}{\text{s}^2}$

Conversion Equation (with numbers and units) for calculating result.

Engineering skill: Estimate/approximate order-of-magnitudes for mass, force, and stress.

7 11	, ,	
Mass of a laptop computer	0.04/0.4/4/40/400	lbm
Weight of a laptop computer	0.04/0.4/4/40/400	lbf
Weight of a laptop computer	0.02/0.2/2/20/200	Newtons
Gage pressure in a bike tire (remember pumping up a bike/car tire?)	0.05/0.5/5/50/500	psi
Gage pressure in a bike tire	0.03/0.3/3/30/300	kPa
Stress of a 200 lbf person on one flat sneaker on a wood floor	0.05/0.5/5/50/500	psi
Stress of a 120 lbf person on one stiletto heel on a wood floor	0.03/0.3/3/30/300	psi

16.8 ♣ Forces on an aluminum body (Sections 18.4, 18.2, and 19.4).

Consider 6.022×10^{23} molecules of aluminum ($\approx 27 \text{ grams}$) which define a body B. The quantities under investigation (and related moments) are:

- \bullet $\vec{\mathbf{F}}^B$ the resultant of all forces on B
- ullet $\mathbf{ec{F}}_{ ext{internal}}^{B}$ the resultant of all internal forces in B
- $oldsymbol{ec{\mathbf{F}}}^{B}_{ ext{external}}$ the resultant of all external forces on B
- $oldsymbol{ec{\mathbf{F}}}^{B_1/B_2}$ the force on molecule B_1 from molecule B_2

P (arbitrary point)

Condition	Static equilibrium?	Circle the following statements that are always true.			
B is rigid	Yes			$ec{\mathbf{F}}_{ ext{external}}^{B} = ec{0}$	
		$ec{ extbf{M}}^{B/P} = ec{ extbf{0}}$	${f ec{M}}_{ m internal}^{B/P}={f ec{0}}$	${f ec{M}}_{ m external}^{B/P} = {f ec{0}}$	$ec{ extbf{M}}^{ec{ extbf{F}}^{B_2/B_1}/P}\!=ec{ extbf{0}}$
B is flexible	e Yes				${ec{ extbf{F}}}^{B_1/B_2} = ec{ extbf{0}}$
(a thin ruler)		$ec{ extbf{M}}^{B/P} = ec{ extbf{0}}$	${f ec{M}}_{ m internal}^{B/P}={f ec{0}}$	${f ec{M}}_{ m external}^{B/P}={f ec{0}}$	$ec{ extbf{M}}^{ec{ extbf{F}}^{B_2/B_1}/P} = ec{ extbf{0}}$
B is rigid	No			${f ec F}_{ m external}^B={f ec 0}$	
		$ec{ extbf{M}}^{B/P} = ec{ extbf{0}}$	${f ec{M}}_{ m internal}^{B/P}={f ec{0}}$	$ec{ extbf{M}}_{ ext{external}}^{B/P} = ec{ extbf{0}}$	$ec{ extbf{M}}^{ec{ extbf{F}}^{B_2/B_1}/P}\!=ec{ extbf{0}}$
B is molten	n No			${f ec F}_{ m external}^B={f ec 0}$	
(liquid metal))	$ec{ extbf{M}}^{B/P} = ec{ extbf{0}}$	${f ec{M}}_{ m internal}^{B/P}={f ec{0}}$	$ec{ extbf{M}}_{ ext{external}}^{B/P} = ec{ extbf{0}}$	$ec{ extbf{M}}^{ec{ extbf{F}}^{B_2/B_1/P}}\!=ec{ extbf{0}}$

16.9 \clubsuit Measurement accuracies of the Universal Gravitational Constant G (Section 21.3).

The gravitational force on a particle Q of mass m_Q from a particle P of mass m_P can be written in terms of Q's position from P as

What are the dimensions of G (in terms of mass, length and time) and the SI units of G?

Result: Dimensions of G: (in terms of mass, length, time)

Units of G: (in terms of kg, m, s)

The number of significant digits the first measurement of the "Universal Gravitational Constant" G in 1798 by Cavendish and recent (year 2000⁺) experiments of G are estimated to be accurate to:

Experiments in 1798	1	2	5	7	infinite
Experiments in 2000 ⁺	1	2	5	7	infinite

Note: Section 21.3 discusses experiments involving G.

16.10 \clubsuit According to Newton's laws (<u>theories</u>), is the universe static? (Sections 18.2 and 19.3)

Consider the system S consisting of all matter, life, forces, etc.^a

- Newton's laws dictates the resultant of all forces on S is $\vec{0}$, i.e., $\vec{F}^S = \vec{0}$. True/False.
- The moment of all forces on S about any point P is $\vec{\mathbf{0}}$, i.e., $\vec{\mathbf{M}}^{S/P} = \vec{\mathbf{0}}$. True/False.
- Newton's laws dictates the universe is in **static equilibrium**. **True/False**.
- ullet Newton's $1^{st}/2^{nd}/3^{rd}$ law explains my answer? (circle one)

Why:

^a Carbon 12 has $\approx 6.02 \times 10^{23}$ molecules. The universe has $\approx 10^{80}$ molecules.

16.11 \clubsuit FBDs (<u>Free-Body Diagrams</u>) for 3D three-balloon system.

The picture below shows a cup hanging from three light (massless) strings, which attach to a motionless helium-filled balloon. For each system, draw a FBD (use the given assumptions).

	- 400
Sed a	
77 11	

Helium is lighter than air.

FBD of cup:

Assumptions in FBD

Only relevant forces

are Earth's uniform

gravity and contact

forces from strings (no

wind/air resistance, elec-

tromagnetic forces, etc.)

FBD	of	left	string

Assumptions in FBD

FBD of left balloon:

String is inextensible. Only relevant forces are tension in string (gravity/other forces are negligible compared to tension.)

Assumptions in FBD

Relevant forces are gravity from Earth, fluid pressure from air (buoyancy), and contact from strings and other balloons.