20.1 \clubsuit FE/EIT – Bungee jumper conservation of energy K + U = constant

$$K + U = \text{constant}$$

In an ideal energy situation (called *conservation of energy*), potential energy U is converted to kinetic energy K and vice-versa without losing energy to sound, heat, etc. For example, the following bungee jumper is at <u>rest</u> on a platform before a jump. As she starts her jump at height h=0 and falls towards the river, her gravitational potential energy U_{gravity} is converted into spring potential energy U_{spring} and kinetic energy K. At the bottom of her bounce, all her U_{gravity} and K have been converted to U_{spring} . As she starts her bounce back up, her U_{spring} converts to U_{gravity} and K. At the end of her upward bounce, she returns to height h=0 and all energy is converted back to U_{gravity} .

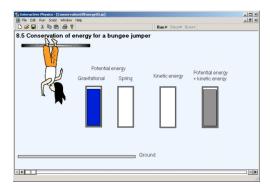
$$U_{\text{gravity}} = m \, \text{g h}$$

 $U_{\text{spring}} = \frac{1}{2} \, k \, s^2$
 $K = \frac{1}{2} \, m \, \text{v}^2$

Bungee jumper's mass	m
Earth's gravitational acceleration	g
Bungee jumper's height	h
Spring constant (linear spring)	k
Spring stretch $(s = h)$	s
Bungee jumper's speed-squared	v^2

+ U = constant

Conservation of mechanical energy



- (a) The gravitational potential energy is largest when the jumper is at the top/middle/bottom, and smallest when she is at the top/middle/bottom.
- (b) When the bungee jumper is at the top, there is no stretch in the bungee cord. Therefore, the spring potential energy is smallest/largest. At the bottom, the bungee cord is highly stretched, and the spring potential energy is smallest/largest.
- (c) The kinetic energy seems to be highest when the jumper is at the top/middle/bottom of a bounce. At this point, her speed is smallest/largest.
- (d) The sum of potential energy and kinetic energy increases/decreases/remains the same.
- (e) Complete the following table. Each row represents a different bungee jumper height.

U_{gravity}	U_{spring}	Kinetic energy K	$K + U_{\text{gravity}} + U_{\text{spring}}$	Bungee jumper height h
(Joules)	(Joules)	(Joules)	(Joules)	(meters)
1000	0	0		top/bottom/in between
356	415		1000	top/bottom/in between
	1000	0	1000	top/bottom/in between
276		200		top/bottom/in between

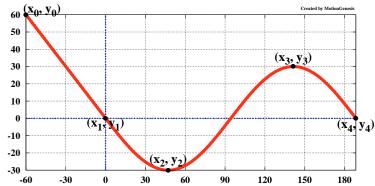
20.2 FE/EIT – Rollercoaster: $\vec{F} = m \vec{a}$ and conservation of mechanical energy

The shape of a roller-coaster track is approximated by a two-part function y(x).

The 1^{st} part is a straight line connecting (x = -60, y = 60) to (0, 0).

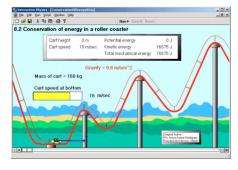
The 2^{nd} part is a sine curve with amplitude 30 m and wave-length ($60 \pi \approx 188.5$) m.

$$y(x) = \begin{cases} -x & x < 0\\ -30 \sin\left(\frac{x}{30}\right) & x \ge 0 \end{cases}$$



A roller-coaster car is released from **rest** at (x = -60, y = 60). The track is smooth (frictionless), Earth's gravitational acceleration $g \approx 10 \frac{\text{m}}{\text{s}^2}$, and the roller-coaster car with occupants is modeled as a particle with mass m = 100 kg. For each location $x_1 \dots x_4$, calculate the roller-coaster speed $v_1 \dots v_4$ (3⁺ digits). Determine the time t_1 when the roller-coaster car is at x_1 .

Loca	tion	<u>Frictionless</u>		
x (m)	y (m)	Speed (m/s)	time t (sec)	
$x_0 = -60$	$y_0 = 60$	$v_0 = 0$ (given)	$t_0 = 0$	
$x_1 = 0$	$y_1 = 0$	$v_1 =$	$t_1 \approx$	
$x_2 = 15\pi$	$y_2 = -30$	$v_2 =$	$t_2 \approx \boxed{6.4}$	
$x_3 = 45\pi$	$y_3 = 30$	$v_3 =$	$t_3 \approx 9.8$	
$x_4 = 60\pi$	$y_4 = 0$	$v_4 = \boxed{\sqrt{1200} \approx 34.6}$	$t_4 \approx \boxed{11.8}$	



† Optional: Determine times $t_2 \dots t_4$. Hint: Run a simulation and output $\frac{x}{\pi}$ and t + 4.898979.

†† Optional: Determine the same quantities using a coefficient of kinetic friction $\mu_k = 0.1$.

20.3 FE/EIT – Snowboarder: Conservation of energy to normal forces

In ideal situations, potential energy can be converted to kinetic energy and vice versa [i.e., kinetic energy plus potential energy is *conserved* (constant)]. For example, a snowboarder gains potential energy when chair-lifted to the top of the mountain. As the snowboarder goes downhill, potential energy decreases and speed and kinetic energy increases.

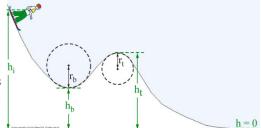
$$U_{\text{gravity}} = m \text{ g h}$$

 $K = \frac{1}{2} m \text{ v}^2$

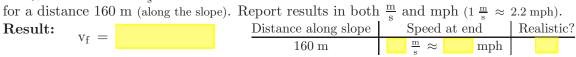
$$\Delta K + \Delta U = 0$$

Conservation of mechanical energy

Model the snowboarder as a particle of mass m that starts from $\underline{\text{rest}}$ at initial height h_i above the bottom of the hill. Assume there is negligible air-resistance, friction, etc.



(a) Express the snowboarder's speed v_f at a height h_f above the bottom of the hill (in terms of g, h_i, h_f). Using $g \approx 10 \frac{\text{m}}{\text{s}^2}$, calculate the snowboarder's speed when boarding down a 30° slope



(b) Referring to the snowboarding picture, the bottom part of the first dip is a height $h_{\rm b}$ above the bottom of the hill and is modeled as a downward semi-circular shape of radius r_b . Determine