
Example: Inverted pendulum on cart

The figure to the right shows a rigid body B attached by an frictionless
pin (revolute) joint to a cart A (modeled as a particle). The cart A slides on a
horizontal frictionless track. The track is fixed in a Newtonian frame N .

Right-handed orthogonal unit vectors n̂x, n̂y, n̂z and b̂x, b̂y, b̂z are fixed
in N and B respectively, with:
• n̂x horizontally-right and n̂y vertically-upward
• n̂z = b̂z parallel to B’s axis of rotation in N

• b̂y directed from A to the distal end of B
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Quantity Symbol Value
Mass of A mA 10.0 kg
Mass of B mB 1.0 kg
Distance between A and Bcm (B’s center of mass) L 0.5 m

B’s moment of inertia about Bcm for �bz Izz 0.08333 kg∗m2

Earth’s gravitational constant g 9.8 m/s2

�nx measure of feedback-control force applied to A Fc Specified
�nx measure of A’s position from No (a point fixed in N) x Variable

Angle from �ny to �by with −
�nz sense θ Variable

1 Kinematics (space and time)

Kinematics is the study of the relationship between space and time, independent of the influence
of mass or forces. The kinematic quantities normally needed for motion analysis are listed
below. In many circumstances, it is efficient to form rotation matrices, angular velocities, and
angular accelerations before position vectors, velocities, and accelerations.

F = m a
R  r
ω  v
α  a

Kinematic Quantity Quantities needed for analyzing the inverted pendulum on a cart

Rotation matrix bRn, the rotation matrix relating b̂x, b̂y, b̂z and n̂x, n̂y, n̂z

Angular velocity N�ωωωωωωωωωωωωωB, B’s angular velocity in N

Angular acceleration N�αααααααααααααB , B’s angular acceleration in N

Position vectors �rA/No and �rBcm/A, the position vector of A from No and of Bcm from A

Velocity N�vA and N�vBcm , A’s velocity in N and Bcm’s velocity in N

Acceleration N�aA and N�aBcm , A’s acceleration in N and Bcm’s acceleration in N
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2 Rotation matrix, angular velocity, angular acceleration

To relate b̂x, b̂y, b̂z and n̂x, n̂y, n̂z, redraw these unit vectors in the geometrically-suggestive way shown
below. To determine the 1st row of the bRn rotation matrix, b̂x is expressed in terms of n̂x, n̂y, n̂z as shown
below. Similarly, the 2nd and 3rd rows of bRn are found by expressing b̂y and b̂z in terms of n̂x, n̂y, n̂z.

θ

θ

bx

by

b̂x = cos(θ) n̂x − sin(θ) n̂y

b̂y = n̂x + n̂y

b̂z = n̂z

bRn n̂x n̂y n̂z

b̂x cos(θ) −sin(θ) 0

b̂y

b̂z

Angular velocity (special 2D case)

When a unit vector λ̂̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ is fixed in both reference frames B and N , B has a simple
angular velocity in N that can be calculated via equation (1).

N�ωωωωωωωωωωωωωB =
(simple)

± θ̇ λ̂̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ̂λ (1)

Due to the pin joint, b̂z is fixeda in both B and N , so B has a simple angular velocity in N .

• b̂z is a unit vector fixed in both N and B (parallel to the pin joint)

• n̂y is fixed in N and perpendicular to b̂z

• b̂y is fixed in B and perpendicular to b̂z

• θ is the angle between n̂y and b̂y, and θ̇ is its time-derivative
• After pointing the four fingers of your right hand in the direction of n̂y and

curling them in the direction of b̂y, your thumb points in the −b̂z direction.

Since the right-hand rule produces a sign of b̂z that is negative: N�ωωωωωωωωωωωωωB =

θ
B

N

aA vector is said to be fixed in reference frame B if its magnitude is constant and its direction does not change in B.

Angular acceleration

Equation (2) defines the angular acceleration of a reference frame B in a reference frame N .
N�αααααααααααααB also happens to be equal to the time-derivative in BBBBBBBBBBBBB of N�ωωωωωωωωωωωωωB .

Note: Calculate with
Bd N�ωωωωωωωωωωωωωB

dt
if it is easier to compute than

Nd N�ωωωωωωωωωωωωωB

dt
.

N�αααααααααααααB �
Nd N�ωωωωωωωωωωωωωB

dt
=

Bd N�ωωωωωωωωωωωωωB

dt
(2)

B’s angular acceleration in N is most easily calculated
with its alternate definition, i.e.,

N�αααααααααααααB =
B
d N�ωωωωωωωωωωωωωB

dt
=

B
d (−θ̇ b̂z)

dt
=

3 Position vectors, velocity, acceleration

Position vectors are usually formed by inspection and vector addition.

• Inspection of the figure: (A’s position from N).

• Inspection of the figure: (Bcm’s position from A).

• Vector addition: �rBcm/No = �rBcm/A + �rA/No =
(Bcm’s position from No)

L

A

B

N

x
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Velocity and acceleration

N�vBcm (the velocity of a point Bcm in a reference frame N) is defined as the
time-derivative in N of �rBcm/No (Bcm’s position from No).

N�vBcm �
Nd�rBcm/No

dt
(3)

Point No is any point fixed in N

N�vBcm �
N
d�rBcm/No

dt
=

N
d (x n̂x + L b̂y)

dt

=
N
d (x n̂x)

dt
+

N
d (L b̂y)

dt

= ẋ n̂x +
B
d (L b̂y)

dt
+ N�ωωωωωωωωωωωωωB × L b̂y

= ẋ n̂x + �0 + −θ̇ b̂z × L b̂y

=

θ

L

A

B

N

x

N�aBcm (the acceleration of point Bcm in reference frame N) is defined as the
time-derivative in N of N�vBcm (Bcm’s velocity in N).

N�aBcm �
Nd N�vBcm

dt
(4)

N�aBcm �
N
d N�vBcm

dt
=

N
d (ẋ n̂x + θ̇ L b̂x)

dt
=

N
d (ẋ n̂x)

dt
+

N
d (θ̇ L b̂x)

dt

= ẍ n̂x +
B
d (θ̇ Lb̂x)

dt
+ N�ωωωωωωωωωωωωωB × (θ̇ L b̂x) =

4 Forces, moments, and free-body diagrams (2D)

To draw a free-body diagram (FBD), isolate a single body (or system S of A and B)

and draw all the external contact and distance forces that act on it. Shown right are
FBDs with all the external forces on the cart A and pendulum B.a

Quantity Description Type
Fc n̂x measure of control force applied to A Contact
N n̂y measure of the resultant normal force on A from N Contact
Rx n̂x measure of the force on B from A across the revolute joint Contact
Ry n̂y measure of the force on B from A across the revolute joint Contact

mA g −n̂y measure of Earth’s gravitational force on A Distance
mB g −n̂y measure of Earth’s gravitational force on B Distance

Resultant force on A: �F
A

= n̂x + n̂y

Resultant force on B: �F
B

= n̂x + n̂y

Resultant force on S: �F
S

= n̂x + n̂y

aAlternatively, to use the efficient MG road-map/D’Alembert method (Section 25.9) to elimi-
nate “constraint forces” Rx and Ry , draw a FBD of the system S consisting of A and B (no need to
draw A alone). Since the revolute joint between A and B is ideal, action/reaction is used to minimize
the number of unknowns.

F = m a
B

Rx

Ry

mB g

FBD of B

Fc

A

mA g Rx

Ry

N
FBD of A

The b̂z component of
the moment of all forces
on B about Bcm isa

�M
B/Bcm

z = �rA/Bcm × (Rx n̂x + Ry n̂y) + �������0
�rBcm/Bcm × (

−mB g n̂y

)
= −L b̂y × (Rx n̂x + Ry n̂y) = [L cos(θ)Rx − L sin(θ)Ry] b̂z

aNote: The rotation table to useful for calculating the cross-products (�by × �nx) and (�by × �ny).
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5 Mass, center of mass, inertia (required by dynamics)

• Mass of each particle and body, e.g., mA (mass of particle A) and mB (mass of body B).
• Location of each particle and body center of mass, e.g., �rA/No and �rBcm/A.
• Inertia dyadic of each rigid body about a point fixed on the body. Since B’s angular

velocity in N is simple, Izz (B’s moment of inertia about Bcm for �bz) suffices for this analyses.

F = m a

6 Newton/Euler laws of motion for A and B separately (inefficient)

An inefficient way to form this system’s equations of motion is with separate analyses of A and B.
Using �F = m�a for particle A and body B [in conjunction with the previous free-body diagrams (FBDs) ] yields,

�F
A

= mA ∗ N�aA ⇒ (Fc − Rx) n̂x + (N − mAg − Ry) n̂y = mA ẍ n̂x

Dot-multiply with �nx: Dot-multiply with �ny:

�F
B

= mB ∗ N�aBcm ⇒ Rx n̂x + (Ry − mBg) n̂y = mB (ẍ n̂x + θ̈ L b̂x − θ̇2 L b̂y)
Dot-multiplication with n̂x and n̂y (use the rotation table to calculate dot-products) gives

Rx = mB
[
ẍ + θ̈ L (b̂x ············· n̂x) − θ̇2 L (b̂y ············· n̂x)

]
(Ry − mBg) = mB

[
θ̈ L (b̂x ············· n̂y) − θ̇2 L (b̂y ············· n̂y)

]
Rx = mB

[
ẍ + θ̈ L cos(θ) − θ̇2 L sin(θ)

]
Note: Separate analyses of A and B is less efficient than the MG road-map/D’Alembert method of Section 21.1.3 and Hw 15.9.

Summary of Newton/Euler equations of motion (inefficient)

Fc − Rx = mA ẍ

N − mA g − Ry = 0
Rx = mB [ẍ + θ̈ L cos(θ) − θ̇2 L sin(θ)]

(Ry − mBg) = mB [−θ̈ L sin(θ) − θ̇2 L cos(θ)]
L cos(θ)Rx − L sin(θ)Ry = −Izz θ̈

θ

L

Fc
A

B

N

x

There are 5555555555555 unknown variables in the previous set of equations, namely Rx, Ry, N , x, θ.
Note: Once θ(t) is known, θ̇(t) and θ̈(t) are known. Similarly, once x(t) is known, ẋ(t) and ẍ(t) are known.

7 Dynamics of a rigid body with simple angular velocity (special 2D case)

B

Rx

Ry

mB g

Euler’s equation for a rigid body B with a simple angular
velocity in a Newtonian reference frame N is:

�M
B/Bcm

z =
(20.5)

Izz
N�αααααααααααααB

• �M
B/Bcm

z is the b̂z = n̂z component of the moment of all forces on B about Bcm.

• Izz is B’s moment of inertia about the line passing through Bcm and parallel to b̂z.

• N�ααααααααααααα
B is B’s angular acceleration in N .

Assembling these terms and subsequent dot-multiplication with b̂z produces

L cos(θ)Rx − L sin(θ)Ry = −Izz θ̈
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8 Optional: Angular momentum principle (2D alternative to Section 25.7)

The angular momentum principle for any system S in a Newtonian
reference frame N relates the moment of all forces on S about Scm to
the time-derivative of S’s angular momentum about Scm in N .

When S is a rigid body B,
N�H

B/Bcm

z (the �bz component of
N�H

B/Bcm
z ) is

IB/Bcm
zz (B’s moment of inertia about Bcm for �bz) multiplied by N�ωωωωωωωωωωωωωB.

�M
S/Scm =

(20.4)

Nd
N�H

S/Scm

dt

N�H
B/Bcm

z =
(15.3)

IB/Bcm
zz ∗ N�ωωωωωωωωωωωωωB

Assembling terms in the angular momentum principle and dot-multiplication with b̂z produces[
�M

B/Bcm =
Nd

N�H
B/Bcm

dt

] ············· b̂z ⇒ L cos(θ)Rx − L sin(θ)Ry = −Izz θ̈

9 Equations of motion via MG road-maps/D’Alembert (efficient)

For various purposes (e.g., control system design), it is useful to eliminate the unknown “constraint forces” Rx,
Ry, N . Instead of using tedious linear-algebra to reduce the previous set of 5 equations in 5 unknowns to 2
equations in 2 unknowns (ẍ, θ̈), it is more efficient to use MG road-maps (Section 21.1.3) or the methods
of Lagrange or Kane as they automatically eliminate Rx, Ry, N .

Translate/ Direction System FBD About
Variable Rotate (unit vector) S of S point MG road-map equation

x Draw
Not

applicable ············· ( =
(20.1)

)

θ Draw ············· ( =
(20.4)

)

Hw 15.9 and

Chapter 25

complete these

calculations.

Note: mS ∗ N�aScm =
(11.3)

mA ∗ N�aA + mB ∗ N�aBcm and
N
d

N�H
B/A

dt
+ . . . =

(20.5)
I

B/A
zz ∗N�αααααααααααααB + mB ∗�rBcm/A×N�aA.

MG road-map for x ⇒ Fc = (mA + mB) ẍ + mB L cos(θ) θ̈ − mB L sin(θ) θ̇2

MG road-map for θ ⇒ mB g L sin(θ) = mB L cos(θ) ẍ + (Izz + mB L2) θ̈

10 Matrix form of equations of motion (for solution, controls, . . . )

For numerical solution and various control-systems techniques, it can be useful to write this system’s
nonlinear equations of motion in matrix form as[

1
0

] [
Fc

]
=

[
mA + mB mB L cos(θ)

mB L cos(θ) Izz + mB L2

] [
ẍ

θ̈

]
+

[
−mB L sin(θ) θ̇2

−mB g L sin(θ)

]
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