17.1 & Concepts: Define and draw the moment of a force.

Write the **definition** for the moment of force $\vec{\mathbf{F}}^Q$ applied to point Q about point Q. Draw a sketch with each part of your definition clearly labeled.

Result:

$$ec{ extbf{M}}^{ec{ extbf{F}}^Q\!/O} \, \triangleq \, egin{bmatrix} imes \ i$$

17.2 & Moment vs. torque (refer to Section 19.5).

Consider the various sets S of forces, their resultants $\vec{\mathbf{F}}^S$, and moments about points O, P, and Q. This example shows how to easily determine whether a moment is a torque.¹

S	${\bf \vec F}^S$	${f ec{M}}^{S/O}$	${f ec{M}}^{S/P}$	$\vec{\mathbf{M}}^{S/Q}$	$ec{\mathbf{M}}^{S/O} \stackrel{?}{=} ec{\mathbf{M}}^{S/P} \stackrel{?}{=} ec{\mathbf{M}}^{S/Q}$	Moment is torque?
A	$10\widehat{\mathbf{n}}_{\mathrm{y}}$	$50\widehat{\mathbf{n}}_{\mathrm{z}}$	$\vec{0}$		m Yes/No	m Yes/No
B					$\mathrm{Yes/No}$	$\mathrm{Yes/No}$
C					$\mathrm{Yes/No}$	$\mathrm{Yes/No}$
D					Yes/No	m Yes/No

17.3 & Moment and torque concepts.

75% All torques are moments.

61% All moments are torques.

True/False True/False

01/0 An moments are torques.

61% The moment of a couple about a point O is equal to the moment of the couple about any other point P True/False

17.4 \$\infty\$ Drawing couples (a couple is a set of forces whose resultant is zero).

Each figure below shows a single force $\vec{\mathbf{F}}$ applied tangentially to a point on the periphery of a circle. Complete each figure by drawing couples consisting of $\underline{\mathbf{2}}$, $\underline{\mathbf{3}}$, and $\underline{\mathbf{4}}$ forces, respectively, so:

- Each force has magnitude $|\vec{\mathbf{F}}|$ and is applied at distinct points on the circle's periphery
- Each force is directed **tangent** to the circle's periphery
- The set of forces create a couple with non-zero torque

17.5 ♣ Moments of forces about various points.

Consider the six figures below, each which contain a set of forces. Circle the figure(s) in which the moment of its set of forces about points O, P, and Q all are equal, i.e.,

Moment around point O = Moment around point P = Moment around point Q

Note: All forces have the same magnitude. Forces that are not horizontal or vertical are 30° from vertical.

17.6 \$\ \text{Forces, moments, and lines of action.}

<u>Draw</u> a non-zero force $\vec{\mathbf{F}}^P$ on point P and a non-zero force $\vec{\mathbf{F}}^Q$ on point Q so:

- $\vec{\mathbf{F}}^P = \vec{\mathbf{F}}^Q$ (force on P has the same magnitude and direction as the force on Q)
- $\vec{\mathbf{M}}^{\vec{\mathbf{F}}^P/O}$ (moment of $\vec{\mathbf{F}}^P$ about point O) is **equal** to $\vec{\mathbf{M}}^{\vec{\mathbf{F}}^Q/O}$ (moment of $\vec{\mathbf{F}}^Q$ about O).

Repeat on the right-figure below, except ensure $\vec{\mathbf{F}}^P$ and $\vec{\mathbf{F}}^Q$ produce unequal moments about O.

