Homework 9. Chapters 10, 11.

Show work – except for ♣♣♣♣♣♣♣♣♣♣♣ fill-in-blanks. Particles: Mass, momentum, energy, \(\mathbf{F} = m \mathbf{a} \).

9.1 ♣ Sort from smallest mass unit to largest mass unit. (see Section 11.1)

<table>
<thead>
<tr>
<th>1 oz(_m)</th>
<th>1 g</th>
<th>1 metric ton</th>
<th>1 kg</th>
<th>1 mg</th>
<th>1 U.S. ton</th>
<th>1 slug</th>
<th>1 lb(_m)</th>
</tr>
</thead>
</table>

9.2 ♣ Concepts: What objects have kinetic energy or linear momentum?

\(^N \mathbf{K}^S \), the kinetic energy of an object \(S \) in a reference frame \(N \) is to be determined.

Objects \(S \) that can have a non-zero kinetic energy are (circle all appropriate objects):

<table>
<thead>
<tr>
<th>Real number</th>
<th>Matrix</th>
<th>Set of points</th>
<th>Mass center of a rigid body</th>
<th>Vector</th>
<th>Point</th>
<th>Reference frame</th>
<th>Flexible body</th>
<th>3D orthogonal unit basis</th>
<th>Particle</th>
<th>Rigid body</th>
<th>System of particles and bodies</th>
</tr>
</thead>
</table>

Repeat for \(^N \mathbf{L}^S \), the linear momentum of object \(S \) in reference frame \(N \) (box appropriate objects).

9.3 ♣ Particle angular momentum concepts.

The following figures show a particle \(Q \) of mass 1 kg moving in a plane \(N \). Point \(N_0 \) is fixed in \(N \). The figure on the left shows \(Q \) moving clockwise with speed 12 on a circle of radius 4 that is centered at \(N_0 \). The figure on the right shows \(Q \) moving with a speed of 12 on a horizontal line that is 4 from \(N_0 \). Box the following true statements about \(Q \)’s angular momentum in \(N \).

\(Q \)’s angular momentum about \(N_0 \) is \(\mathbf{0} \).
\(Q \)’s angular momentum about \(N_0 \) is not \(\mathbf{0} \).
\(Q \)’s angular momentum about \(N_0 \) is \(\vec{\infty} \).
\(Q \)’s angular momentum about \(N_0 \) does not exist.

9.4 ♣ Optional: Just for fun. Culture, religion, science and “mass”. (Sections , 11.7, 11.6)

<table>
<thead>
<tr>
<th>Etymology of “mass”</th>
<th>Fill-in the blank</th>
</tr>
</thead>
</table>
| The “m” in \(\mathbf{F} = m \mathbf{a} \). | |}
| Jewish Passover flat bread/cracker. | |}
| Greek for flat bread. | |}
| Latin for lump of dough. | |}
| Spanish for lump of dough. | |}
| Catholics eat bread at this Sunday event. | |}
| Approximate number of atoms in 12 grams of carbon-12. | \(6 \times 10 \) |
| Estimated number of atoms in the visible universe. | \(1 \times 10 \) |
| Sub-atomic particle responsible for mass in animals, vegetables, and minerals. | |}
| Most expensive science project in history to find sub-atomic particle with mass. | |}
| Possible Earth-fatal object created by aforementioned science project. | |}

Copyright © 1992-2019 Paul Mitiguy. All rights reserved. 223 Homework 9: Particles
9.5 FE/EIT Review – Motion of a building in an earthquake.

A building moves due to an earthquake. The horizontally-right displacement of the building’s base \(B \) is modeled as \(A \sin(\Omega t) \) where the constant \(A \) is the magnitude of the ground’s horizontal displacement and the constant \(\Omega \) is the earthquake’s frequency.

The base motion causes the building’s roof \(Q \) of mass \(m \) to displace horizontally by \(x(t) \) from its base. The stiffness and material damping in each of the two columns that support the roof is modeled as a linear horizontal spring \((k) \) and linear horizontal damper \((b) \).

For this dynamic analysis, the system is modeled as shown right (with a spring of 0 natural length). It is helpful to introduce a horizontally-right unit vector \(\hat{n}_x \).

(a) Draw \(Q \)’s free-body diagram and determine the spring/damper force on \(Q \).
\[\vec{F}_{Spring/Damper}^{FBD} = (−b_{eq} \dot{x} + −k_{eq} x) \hat{n}_x \]

(b) Form the relevant acceleration for \(\vec{F} = m \vec{a} \) (e.g., differentiate the relevant position vector/velocity).
Next, dot-product \(\vec{F} = m \vec{a} \) with \(\hat{n}_x \) to write a differential equation governing \(x(t) \).
\[\ddot{x} + b_{eq} \dot{x} + k_{eq} x = m A \Omega^2 \sin(\Omega t) \]

(c) Graphed right is \(x(t) \) when:
\(\begin{align*}
\text{(a)} & \quad \Omega = 0.8 \sqrt{\frac{k_{eq}}{m}} = 0.8 \omega_n \quad x_a(t) \\
\text{(b)} & \quad \Omega = 1.0 \sqrt{\frac{k_{eq}}{m}} = 1.0 \omega_n \quad x_b(t) \\
\text{(c)} & \quad \Omega = 1.2 \sqrt{\frac{k_{eq}}{m}} = 1.2 \omega_n \quad x_c(t)
\end{align*} \)

Circle the \(\Omega \) that corresponds to the largest steady-state amplitude for \(x(t) \).

Note: These graphs use \(m = 5000 \text{ kg}, \quad b_{eq} = 1000 \frac{\text{N sec}}{\text{m}}, \quad k_{eq} = 20000 \frac{\text{N}}{\text{m}}, \quad A = 0.1 \text{ m} \).

(d) Physics \((\vec{F} = m \vec{a}) \) gives the previous (boxed) equation in terms of positive constants \(m, b_{eq}, k_{eq} \). However, its mathematics is easier if that equation is rewritten (rearrange by dividing by \(m \)) in terms of the positive constants \(\zeta \) and \(\omega_n \) as shown in the boxed-equation below. Determine the building’s natural frequency \(\omega_n \) and damping ratio \(\zeta \) in terms of \(m, b_{eq}, k_{eq} \).
\[\ddot{x} + 2 \zeta \omega_n \dot{x} + \omega_n^2 x = A \Omega^2 \sin(\Omega t) \quad \Rightarrow \quad \omega_n = \quad \zeta = \quad \]

\(\frac{\omega_n}{2} \)

(e) When \(\zeta = 0 \), the building vibrates at \(\omega_n \). When \(0 \leq \zeta \leq 1 \) (common for many structures), the building vibrates at a damped natural frequency \(\omega_d \triangleq \omega_n \sqrt{1 − \zeta^2} \).
In general, damping slows things down and makes \(\omega_d < \omega_n \). True/False.