21.1.1 MG road-map: Projectile motion (2D)

A baseball (particle Q) flies over Earth N (a Newtonian reference frame). Aerodynamic forces on the baseball are modeled as $-b\vec{\mathbf{v}}$ ($\vec{\mathbf{v}}$ is Q's velocity in N).

 $\hat{\mathbf{n}}_{\mathbf{x}}$ is horizontally-right, $\hat{\mathbf{n}}_{\mathbf{y}}$ is vertically-upward, and $N_{\mathbf{o}}$ is home-plate (point fixed in N).

MG road-map for projectile motion x and y ($\hat{\mathbf{n}}_x$, $\hat{\mathbf{n}}_y$ measures of Q's position vector from N_o)

Variable	Translate/ Rotate	Direction (unit vector)	$\mathop{\rm System}_S$	$_{\mathrm{of}\ S}^{\mathrm{FBD}}$	About point	$MG\ road\mbox{-}map\ equation$
x	Translate	$ \widehat{\mathbf{n}}_{\mathrm{x}} $	Q	Draw	Not applicable	$\widehat{\mathbf{n}}_{\mathbf{x}} \cdot (\vec{\mathbf{F}}^Q \underset{(20.1)}{=} m^{Q N} \vec{\mathbf{a}}^Q)$
y	Translate	$\widehat{\mathbf{n}}_{\mathrm{y}}$	Q	Draw	Not applicable	$\widehat{\mathbf{n}}_{\mathbf{y}} \cdot (\overrightarrow{\mathbf{F}}^{Q}) = m^{Q N} \overrightarrow{\mathbf{a}}^{Q}$

Draw FBD

21.1.2 MG road-map: Rigid body pendulum (2D)

A non-uniform density rigid rod A is attached at point A_0 of A by a frictionless revolute/pin joint to Earth N (Newtonian reference frame). The rod swings with a "pendulum angle" θ in a vertical plane that is perpendicular to unit vector $\hat{\mathbf{a}}_z$.

Variable		Direction (unit vector)	$\mathop{\rm System}_{S}$	$ \begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array} $	About point	MG road-map equation
θ	Rotate	$\widehat{\mathbf{a}}_{\mathrm{z}}=\widehat{\mathbf{n}}_{\mathrm{z}}$	A	Draw	$A_{ m o}$	$\widehat{\mathbf{a}}_{\mathbf{z}} \cdot (\widehat{\mathbf{M}}^{A/A_{\mathbf{o}}}) = \frac{{}^{N} d^{N} \widehat{\mathbf{H}}^{A/A_{\mathbf{o}}}}{dt})$

Solution and simulation link at $\underline{www.MotionGenesis.com} \Rightarrow \underline{Textbooks} \Rightarrow \underline{Resources}$.

MG road-map: Inverted pendulum on cart $(x \text{ and } \theta)$ (2D) 21.1.3

A rigid rod B is pinned to a massive cart A (modeled as a particle) that translates horizontally in a Newtonian reference frame N. The cart's position vector from a point N_0 fixed in N is $x \hat{\mathbf{n}}_x$ ($\hat{\mathbf{n}}_x$ is horizontally-right). B's swinging motion in Nis in a vertical plane perpendicular to $\hat{\mathbf{n}}_{\mathbf{z}}$ (a unit vector fixed in both B and N).

Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$_{\mathrm{of}\ S}^{\mathrm{FBD}}$	About point	MG road-map equation
x	Translate	$\widehat{\mathbf{n}}_{\mathrm{x}}$	A, B	Draw	Not applicable	$[\widehat{\mathbf{n}}_{\mathrm{x}}] \cdot ([\overrightarrow{\mathbf{F}}^S]] = m^S * {}^N \overrightarrow{\mathbf{a}}^{S_{\mathrm{cm}}}]$
θ	Rotate	$\widehat{\mathbf{b}}_{\mathrm{z}}=\widehat{\mathbf{n}}_{\mathrm{z}}$	B	Draw	A	$\widehat{\mathbf{b}}_{\mathbf{z}} \cdot (\widehat{\mathbf{M}}^{B/A} = \underbrace{\frac{{}^{N} \widehat{\mathbf{H}}^{B/A}}{dt} + \dots})$

Homework 15.8 and Chapter 25 complete these calculations.

Note:
$$m^S * {}^N \vec{\mathbf{a}}^{S_{cm}} = m^A * {}^N \vec{\mathbf{a}}^A + m^B * {}^N \vec{\mathbf{a}}^{B_{cm}}$$

Note:
$$m^S * {}^N \vec{\mathbf{a}}^{S_{cm}} \stackrel{=}{\underset{(11.3)}{=}} m^A * {}^N \vec{\mathbf{a}}^A + m^B * {}^N \vec{\mathbf{a}}^{B_{cm}}$$
 and $\frac{{}^N d^N \vec{\mathbf{H}}^{B/A}}{dt} + \dots = \underbrace{{}^{B/A}_{(20.6)}}_{(20.6)} \mathbf{I}^{B/A}_{zz} * {}^N \vec{\mathbf{a}}^B + m^B * \vec{\mathbf{r}}^{B_{cm}/A} \times {}^N \vec{\mathbf{a}}^A.$

21.1.4 MG road-map: Rotating rigid body (3D)

Shown right is a rotating rigid body B (e.g., tennis racquet, spacecraft, or aircraft) in a Newtonian reference frame N. Right-handed orthogonal unit vectors $\hat{\mathbf{b}}_{\mathbf{x}}$, $\hat{\mathbf{b}}_{\mathbf{y}}$, $\hat{\mathbf{b}}_{\mathbf{z}}$ are fixed in B.

Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$ \begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array} $	About point	$MG\ road\mbox{-}map\ equation$	B
ω_x	Rotate	$\widehat{\mathbf{b}}_{\mathrm{x}}$	B	Draw	$B_{ m cm}$	$\widehat{\mathbf{b}}_{\mathbf{x}} \cdot (\widehat{\mathbf{M}}^{B/B_{\mathrm{cm}}}) = \begin{pmatrix} N_d & \widehat{\mathbf{H}}^{B/B_{\mathrm{cm}}} \\ dt \end{pmatrix}$	
ω_y	Rotate	$ \widehat{\mathbf{b}}_{\mathrm{y}} $	B	Draw	$B_{ m cm}$	$\widehat{\mathbf{b}}_{\mathbf{y}} \cdot (\vec{\mathbf{M}}^{B/B_{\mathrm{cm}}} \underset{(20.4)}{=} \frac{{}^{N} d^{N} \vec{\mathbf{H}}^{B/B_{\mathrm{cm}}}}{dt})$	
ω_z	Rotate	$ \widehat{\mathbf{b}}_{\mathrm{z}} $	B	Draw	$B_{ m cm}$	$\widehat{\mathbf{b}}_{\mathbf{z}} \cdot (\widehat{\mathbf{M}}^{B/B_{\mathrm{cm}}} \underset{(20.4)}{=} \frac{{}^{N} d^{N} \widehat{\mathbf{H}}^{B/B_{\mathrm{cm}}}}{dt})$	-

Solution and simulation link at $\underline{\mathbf{www.MotionGenesis.com}} \Rightarrow \underline{\mathbf{Textbooks}} \Rightarrow \underline{\mathbf{Resources}}$

Note: The "about point" is somewhat arbitrary. When $B_{\rm cm}$ is chosen: ${}^{N}\vec{\mathbf{H}}^{B/B_{\rm cm}} = \vec{\mathbf{I}}^{B/B_{\rm cm}} \cdot {}^{N}\vec{\boldsymbol{\omega}}^{B}$.

21.1.5 MG road-map: Bridge crane equations of motion (2D)

A payload (particle) Q is welded to a light rigid cable B which swings in a Newtonian frame N. Cable B is pinned to a massive trolley A that can move horizontally along a smooth slot fixed in N with a **specified** (known) displacement x(t). A translational actuator with force measure F_x connects trolly A to point N_0 of N.

MG road-map for pendulum angle θ , actuator force F_x , and cable tension

Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$\begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array}$	About point	MG road-map equation
θ	Rotate	$\widehat{\mathbf{n}}_{\mathrm{z}} = \widehat{\mathbf{b}}_{\mathrm{z}}$	B, Q	Draw	A	$\widehat{\mathbf{n}}_{\mathbf{z}} \cdot (\vec{\mathbf{M}}^{S/A} = \frac{{}^{N} d^{N} \vec{\mathbf{H}}^{S/A}}{dt} + \ldots)$
F_x	Translate	$\widehat{\mathbf{n}}_{\mathrm{x}}$	A, B, Q	Draw	Not applicable	$\hat{\mathbf{n}}_{\mathrm{x}} \cdot (\vec{\mathbf{F}}^{S} = m^{SN} \vec{\mathbf{a}}^{S_{\mathrm{cm}}})$
Tension	Translate	$\widehat{\mathbf{b}}_{\mathrm{y}}$	A, B, Q	Draw	Not applicable	$\hat{\mathbf{n}}_{\mathbf{x}} \cdot (\vec{\mathbf{F}}^Q = m^{Q} \vec{\mathbf{a}}^Q)$

Student/Instructor version at www.MotionGenesis.com \Rightarrow Textbooks \Rightarrow Resources

Note: Only the θ road-map equation is needed to predict this system's motion. The others are shown for illustrative purposes.

21.1.6 MG road-map: Particle on spinning slot (2D)

A particle Q slides on a straight slot B. The slot is connected with a revolute joint to a Newtonian frame N at point B_0 so that B rotates in a horizontal plane perpendicular to $\hat{\mathbf{b}}_{\mathbf{z}}$ ($\hat{\mathbf{b}}_{\mathbf{z}}$ is vertically-upward and fixed in both B and N).

Note: Homework 14.7 completes the MG road-map calculations for x and θ .

MG road-map for x, θ , and F_N ($\hat{\mathbf{b}}_y$ measure of normal force on Q from B)

Va	riable	Translate/ Rotate	Direction (unit vector)	System S	$ \begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array} $	About point	MG road-map equation
	x	Translate	$\widehat{\mathbf{b}}_{\mathrm{x}}$	\overline{Q}	Draw	Not applicable	$\widehat{\mathbf{b}}_{\mathbf{x}} \cdot (\vec{\mathbf{F}}^{Q}) = m^{Q^{N}} \vec{\mathbf{a}}^{Q})$
	θ	Rotate	$ \widehat{\mathbf{b}}_{\mathbf{z}} $	B, Q	Draw	$B_{\rm o}$	$ \widehat{\mathbf{b}}_{\mathbf{z}} \cdot (\vec{\mathbf{M}}^{S/B_{\mathbf{o}}}) = \frac{{}^{N} d^{N} \vec{\mathbf{H}}^{S/B_{\mathbf{o}}}}{dt}) $
	F_N	Translate	$\widehat{\mathbf{b}}_{\mathrm{y}}$	\overline{Q}	Draw	Not applicable	$\widehat{\mathbf{b}}_{\mathbf{y}} \cdot (\mathbf{\vec{F}}^{Q}) = m^{Q N} \mathbf{\vec{a}}^{Q})$

Note: The F_N road-map equation is needed to predict motion if a friction force depends on μF_N .

$${^{N}\vec{\mathbf{H}}^{S/B_{\mathrm{o}}}} = {^{N}\vec{\mathbf{H}}^{B/B_{\mathrm{o}}}} + {^{N}\vec{\mathbf{H}}^{Q/B_{\mathrm{o}}}} \quad \text{where} \quad {^{N}\vec{\mathbf{H}}^{B/B_{\mathrm{o}}}} = {_{(15.3)}} \, \mathbf{I}_{zz} \, {^{N}} \boldsymbol{\omega}^{B} \quad \text{and} \quad {^{N}\vec{\mathbf{H}}^{Q/B_{\mathrm{o}}}} = {_{(10.3)}} \, \vec{\mathbf{r}}^{\, Q/B_{\mathrm{o}}} \times m^{Q \, N} \vec{\mathbf{v}}^{\, Q}.$$

21.1.7 MG road-map: Motion of a chaotic double pendulum (3D)

Shown right is a mechanical model of a swinging babyboot (uniform plate B) attached by a shoelace (thin uniform rod A) to a fixed rigid support N. Rod Ais attached to N by a revolute joint at point N_0 of N. B is attached to A with a second revolute joint at point B_0 so B can rotate freely about A's axis. Note: The revolute joints' axes are *perpendicular*, not parallel.

- The revolute joints are ideal (massless, frictionless, no slop/flexibility).
- Earth is a Newtonian reference frame N.
- Forces due to Earth's gravitation are uniform and constant.
- Other distance forces (electromagnetic and gravitational) and air-resistance are negligible.

Right-handed sets of unit vectors $\hat{\mathbf{n}}_{x}$, $\hat{\mathbf{n}}_{v}$, $\hat{\mathbf{n}}_{z}$; $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{v}$, $\hat{\mathbf{a}}_{z}$; $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{v}$, $\hat{\mathbf{b}}_{z}$ are fixed in N, A, B, respectively, with $\hat{\mathbf{n}}_{x} = \hat{\mathbf{a}}_{x}$ parallel to the revolute axis joining A to N, $\hat{\mathbf{n}}_{z}$ vertically-upward, $\hat{\mathbf{a}}_{z} = \hat{\mathbf{b}}_{z}$ parallel to the rod's long axis (and the revolute axis joining B to A), and $\mathbf{b}_{\mathbf{z}}$ perpendicular to plate B. q_A is the angle from $\hat{\mathbf{n}}_{\mathbf{z}}$ to $\hat{\mathbf{a}}_{\mathbf{z}}$ with $+\hat{\mathbf{n}}_{\mathbf{x}}$ sense. q_B is the angle from $\hat{\mathbf{a}}_{\mathbf{y}}$ to $\hat{\mathbf{b}}_{\mathbf{y}}$ with $+\hat{\mathbf{a}}_{\mathbf{z}}$ sense.

Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$ \begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array} $	About point	MG road-map equation
q_A	Rotate	$\widehat{\mathbf{a}}_{\mathrm{x}}$	A, B	Draw	$A_{ m o}$	$\widehat{\mathbf{a}}_{\mathbf{x}} \cdot (\widehat{\mathbf{M}}^{S/A_{\mathbf{o}}}) = \frac{{}^{N} d^{N} \widehat{\mathbf{H}}^{S/A_{\mathbf{o}}}}{dt})$
q_B	Rotate	$\widehat{\mathbf{b}}_{\mathbf{z}}$	В	Draw	$B_{ m cm}$	$\widehat{\mathbf{b}}_{\mathbf{z}} \cdot (\overrightarrow{\mathbf{M}}^{B/B_{\mathrm{cm}}}) = \frac{{}^{N} d^{N} \overrightarrow{\mathbf{H}}^{B/B_{\mathrm{cm}}}}{dt})$

Solution and simulation link at <u>www.MotionGenesis.com</u> \Rightarrow <u>Textbooks</u> \Rightarrow <u>Resources</u>.

Note: The "about point" for the q_B road-map can be shifted from B_0 to $B_{\rm cm}$ since $\hat{\mathbf{b}}_z \cdot \vec{\mathbf{M}}^{B/B_{\rm cm}} = \hat{\mathbf{b}}_z \cdot \vec{\mathbf{M}}^{B/B_0}$.

$${^{N}\vec{\textbf{H}}}^{S/A_{\rm o}} = {^{N}\vec{\textbf{H}}}^{A/A_{\rm o}} + {^{N}\vec{\textbf{H}}}^{B/A_{\rm o}} \quad \text{where} \quad {^{N}\vec{\textbf{H}}}^{A/A_{\rm o}} = \underbrace{{^{1}\vec{\textbf{I}}}_{zz}^{A/A_{\rm o}} {^{N}}\vec{\boldsymbol{\omega}}^{A}}_{(15.3)} \quad \text{and} \quad {^{N}\vec{\textbf{H}}}^{B/A_{\rm o}} = \underbrace{{^{1}\vec{\textbf{I}}}_{zz}^{B/B_{\rm cm}}}_{(15.4, \, 15.2)} \cdot {^{N}}\vec{\boldsymbol{\omega}}^{B} \quad + \quad \vec{\textbf{r}}^{B_{\rm cm}/A_{\rm o}} \times m^{B} \ {^{N}\vec{\textbf{v}}}^{B_{\rm cm}}.$$

21.1.8 MG road-map: Particle pendulum (2D) - angle and tension

A particle Q is welded to the distal end of a light rigid rope B. The rope's other end attaches to a point B_0 , fixed in a Newtonian reference frame N. The swinging motion of B and Q is in a vertical plane that is perpendicular to unit vector \mathbf{b}_{z} .

MG road-map for pendulum angle θ and tension F_y ($\hat{\mathbf{b}}_y$ measure of force on Q from B)								
Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$ \begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array} $	About point	MG road-map equation		
θ	Rotate	$\widehat{\mathbf{b}}_{\mathrm{z}}$	B, Q	Draw	$B_{\rm o}$	$\widehat{\mathbf{b}_{\mathbf{z}}} \cdot (\widehat{\mathbf{M}}^{S/B_{\mathbf{o}}}) \underset{(20.4)}{=} \frac{{}^{N} d^{N} \vec{\mathbf{H}}^{S/B_{\mathbf{o}}}}{dt})$		
F_y	Translate	$\widehat{\mathbf{b}}_{\mathrm{y}}$	Q	Draw	Not applicable	$\widehat{\mathbf{b}}_{\mathbf{y}} \cdot (\overrightarrow{\mathbf{F}}^{Q}) = m^{Q^{N}} \overrightarrow{\mathbf{a}}^{Q}$		

Note: Only the θ road-map equation is needed to predict motion. The other is shown for illustrative purposes.

 $\text{Note:} \quad \overset{^{N}}{\mathbf{H}}\overset{^{S/N_{\mathrm{o}}}}{=} \ \overset{^{N}}{\mathbf{H}}\overset{^{Q/N_{\mathrm{o}}}}{=} \ \underset{(10.3)}{=} \ \mathbf{\vec{r}}^{\,Q/N_{\mathrm{o}}} \times m^{Q\,N} \mathbf{\vec{v}}^{\,Q}.$ Section 24.3.2 completes all MG road-map calculations for θ .

Many additional MG road-map examples at www.MotionGenesis.com ⇒ $Textbooks \Rightarrow$ Resources.

Draw FBDs

21.1.9 MG road-map: Dynamicist on a turntable (ice-skater)

A dynamics instructor stands on a spinning turntable and swings a heavy dumbbell Q inward and outward to change his spin-rate (similar to the ice-skater). Q is modeled as a particle rigidly attached (welded) to the end of the instructor's hands.

The schematic (below-right) shows a rigid body A (modeling the instructor's legs, torso, and head) that rotates (without friction) relative to Earth (a Newtonian reference frame N) about a vertical axis that is fixed in both A and N and which passes through both point $N_{\rm o}$ of N and point $A_{\rm cm}$ (A's center of mass).

A massless rigid arm B (modeling the instructor's arms and hands) attaches to A by a revolute motor (shoulder/muscles) whose revolute axis is horizontal and located at point $B_{\rm o}$ of B ($B_{\rm o}$ lies on the vertical axis connecting $N_{\rm o}$ and $A_{\rm cm}$).

The motor (muscles) **specifies** B's angle $\theta_{\rm B}$ relative to A to change in a known (prescribed) manner from 0 to π rad in 4 seconds $(\theta_{\rm B} = \pi \frac{t}{4})$.

Right-handed orthogonal unit vectors $\hat{\mathbf{a}}_x$, $\hat{\mathbf{a}}_y$, $\hat{\mathbf{a}}_z$ and $\hat{\mathbf{b}}_x$, $\hat{\mathbf{b}}_y$, $\hat{\mathbf{b}}_z$ are fixed in A and B, respectively, with $\hat{\mathbf{a}}_y$ vertically-upward, $\hat{\mathbf{b}}_z = \hat{\mathbf{a}}_z$ parallel to the revolute motor's axis, and $\hat{\mathbf{b}}_y$ directed from Q to B_o .

Quantity	Symbol	Type	Value
Earth's gravitational constant	g	Constant	$9.8 \frac{m}{s^2}$
Distance between Q and B_o	L	Constant	$0.7~\mathrm{m}$
Mass of Q	m	Constant	12 kg
A's moment of inertia about line $\overline{A_{\rm cm} B_{\rm o}}$	I_{yy}	Constant	0.6 kg m^2
Angle from $\hat{\mathbf{a}}_{y}$ to $\hat{\mathbf{b}}_{y}$ with $+\hat{\mathbf{a}}_{z}$ sense	$\theta_{ m B}$	Specified	$0.25\pi\mathbf{t}\mathrm{rad}$
$\hat{\mathbf{a}}_{v}$ measure of A's angular velocity in N	ω_A	Variable	

Complete the MG road-map for the turntable's "spin-rate" ω_A (Note: The "about point" is not unique)

Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$\begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array}$	About point	MG road-map equation
ω_A	Rotate	$\widehat{\mathbf{a}}_{\mathrm{y}}$	A, B, Q	Draw	$B_{ m o}$	$\widehat{\mathbf{a}}_{\mathbf{y}} \cdot (\vec{\mathbf{M}}^{S/B_{\mathbf{o}}} = \frac{{}^{N}\!d^{N}\vec{\mathbf{H}}^{S/B_{\mathbf{o}}}}{dt})$

 ${\rm Student/Instructor\ version\ at}\ \ \underline{{\bf www.MotionGenesis.com}}\ \Rightarrow\ \underline{{\bf Textbooks}}\ \Rightarrow\ \underline{{\bf Resources}}$

21.1.10 MG road-map: Instructor on turntable with spinning wheel (3D)

The pictures to the right shows dynamicist Dr. G standing on a spinning turntable and holding a spinning bicycle wheel.

The mechanical model (below right) has a rigid body A (modeling the turntable, legs, torso, and head) that can freely rotate relative to Earth (Newtonian reference frame N) about a vertical axis that is fixed in both A and N and which passes through the center of the turntable (point N_o) and A_{cm} (A's center of mass).

A light (massless) rigid frame B (modeling the shoulders, arms, hands, and a portion of the bicycle wheel's axle) is attached to A by a revolute motor at point B_0 of B (B_0 lies on the vertical axis passing through A_{cm}). The motor's revolute axis passes through points B_0 and C_{cm} , is horizontal, and is parallel to $\hat{\mathbf{b}}_{\mathbf{x}} = \hat{\mathbf{a}}_{\mathbf{x}}$.

A rigid bicycle wheel C is attached to B by a frictionless revolute joint whose axis passes through $C_{\rm cm}$ (C's center of mass) and is parallel to $\widehat{\mathbf{b}}_{\rm v}$.

Right-handed orthogonal unit vectors $\hat{\mathbf{a}}_x$, $\hat{\mathbf{a}}_y$, $\hat{\mathbf{a}}_z$ and $\hat{\mathbf{n}}_x$, $\hat{\mathbf{n}}_y$, $\hat{\mathbf{n}}_z$ are fixed in A and N, respectively. Initially $\hat{\mathbf{a}}_i = \hat{\mathbf{n}}_i$ (i = x, y, z), and then rigid body A is subjected to a right-handed rotation characterized by $\theta_A \hat{\mathbf{a}}_z$ where $\hat{\mathbf{a}}_z = \hat{\mathbf{n}}_z$ is directed vertically-upward and $\hat{\mathbf{a}}_x$ points from Dr. G's back to front (parallel to the axis of the revolute motor connecting A and B).

Unit vectors $\hat{\mathbf{b}}_{x}$, $\hat{\mathbf{b}}_{y}$, $\hat{\mathbf{b}}_{z}$ are fixed in B. Initially $\hat{\mathbf{b}}_{i} = \hat{\mathbf{a}}_{i}$ (i = x, y, z), then B is subjected to a θ_{B} ($\hat{\mathbf{a}}_{x} = \hat{\mathbf{b}}_{x}$) right-handed rotation in A where $\hat{\mathbf{b}}_{y}$ is directed along the wheel's axle from Dr. G's right-to-left hand. Dr. G changes θ_{B} in a **specified** sinusoid manner with amplitude 30° and period 4 seconds.

Quantity	Sym	bol and type	Value
Mass of C	m^{C}	Constant	2 kg
Distance between $B_{\rm o}$ and $C_{\rm cm}$	L_x	Constant	$0.5 \mathrm{m}$
A's moment of inertia about $B_{\rm o}$ for $\hat{\mathbf{a}}_{\rm z}$	I_{zz}^A	Constant	0.64 kg m^2
C 's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{b}}_{\rm x}$	I^C	Constant	0.12 kg m^2
C 's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{b}}_{\rm y}$	J^C	Constant	$0.24~\mathrm{kg}\mathrm{m}^2$
Angle from $\hat{\mathbf{n}}_x$ to $\hat{\mathbf{a}}_x$ with $+\hat{\mathbf{n}}_z$ sense	$\theta_{ m A}$	Variable	
Angle from $\hat{\mathbf{a}}_y$ to $\hat{\mathbf{b}}_y$ with ${}^+\hat{\mathbf{a}}_x$ sense	$ heta_{ m B}$	Specified	$\frac{\pi}{6}\sin(\frac{\pi}{2}t)$
$\hat{\mathbf{b}}_{y}$ measure of C 's angular velocity in B	ω_C	Variable	2

Courtesy Doug Schwandt Purchase turntable/bicycle wheel at Arbor-scientific

Complete the MG road-map for θ_A and ω_C (the "about points" are not unique).

Variable	Translate/ Rotate	Direction (unit vector)	System S	$\begin{array}{c} \operatorname{FBD} \\ \operatorname{of} S \end{array}$	About point	MG road-map equation
$ heta_{ m A}$	Rotate	$\widehat{\mathbf{a}}_{\mathrm{z}}$	A, B, C	Draw	$B_{ m o}$	$\widehat{\mathbf{a}}_{\mathbf{z}} \cdot (\vec{\mathbf{M}}^{S/B_{\mathbf{o}}} = \frac{{}^{N}\!d^{N}\vec{\mathbf{H}}^{S/B_{\mathbf{o}}}}{dt})$
ω_C	Rotate	$\widehat{\mathbf{b}}_{\mathrm{y}}$	C	Draw	$C_{ m cm}$	$\widehat{\mathbf{b}}_{\mathbf{y}} \cdot (\vec{\mathbf{M}}^{C/C_{\mathrm{cm}}} = \frac{{}^{N} d^{N} \vec{\mathbf{H}}^{C/C_{\mathrm{cm}}}}{dt})$

 $Student/Instructor\ version\ at\ \underline{www.MotionGenesis.com}\ \Rightarrow\ \underline{Textbooks}\ \Rightarrow\ \underline{Resources}$

21.1.11 MG road-map: Bear riding a unicycle on a high-wire (3D)

The figures to the right show a (massless) pulley-wheel B that **rolls** along a taut (rigid) cable N (fixed on Earth, a Newtonian frame). Rigid body C (seat, rider, and balancing poles) attach to B with an ideal revolute motor at B_0 (B's centroid). The motor axis is aligned with B's symmetry axis.

Right-handed orthogonal unit vectors $\hat{\mathbf{n}}_{\mathbf{x}}$, $\hat{\mathbf{n}}_{\mathbf{v}}$, $\hat{\mathbf{n}}_{\mathbf{z}}$ are fixed in N with $\hat{\mathbf{n}}_{\mathbf{z}}$ vertically-upward and $\hat{\mathbf{n}}_{x}$ directed horizontally along the cable from a point N_0 (fixed in N) to B_N (B's rolling point of contact with N).

Right-handed orthogonal unit vectors $\hat{\mathbf{a}}_{x}$, $\hat{\mathbf{a}}_{v}$, $\hat{\mathbf{a}}_{z}$ are directed with $\hat{\mathbf{a}}_{x} = \hat{\mathbf{n}}_{x}$, $\hat{\mathbf{a}}_{v}$ parallel to the motor axis, and $\hat{\mathbf{a}}_{z}$ from B_{N} to B_{o} .

Right-handed unit vectors $\hat{\mathbf{c}}_{\mathbf{x}}$, $\hat{\mathbf{c}}_{\mathbf{y}}$, $\hat{\mathbf{c}}_{\mathbf{z}}$ are parallel to C's principal inertia axes about $C_{\rm cm}$ (C's center of mass), with $\hat{\mathbf{c}}_{\rm y} = \hat{\mathbf{a}}_{\rm y}$ and $\hat{\mathbf{c}}_{\rm z}$ from $B_{\rm o}$ to $C_{\rm cm}$ (with balancing poles, $C_{\rm cm}$ is below $B_{\rm o}$ and L_C is negative).

Quantity	Symbol	Type	Value
Earth's gravitational constant	g	Constant	9.8 m/s^2
Radius of B	r_B	Constant	$30 \mathrm{~cm}$
$\hat{\mathbf{c}}_{z}$ measure of C_{cm} 's position vector from B_{o}	L_C	Constant	$-35~\mathrm{cm}$
Mass of C	m^C	Constant	2 kg
C 's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{c}}_{\rm x}$	I	Constant	3.4 kg m^2
C 's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{c}}_{\rm y}$	J	Constant	3.2 kg m^2
C 's moment of inertia about $C_{\rm cm}$ for $\hat{\mathbf{c}}_{\rm z}$	K	Constant	2.8 kg m^2
$\widehat{\mathbf{a}}_{\mathbf{y}}$ measure of motor torque on B from C	T_y	Specified	below
Angle from $\hat{\mathbf{n}}_{\mathrm{z}}$ to $\hat{\mathbf{a}}_{\mathrm{z}}$ with $-\hat{\mathbf{n}}_{\mathrm{x}}$ sense	q_A	Variable	
$\hat{\mathbf{a}}_{\mathbf{y}}$ measure of ${}^{A}\vec{\boldsymbol{\omega}}^{B}$ (${}^{A}\vec{\boldsymbol{\omega}}^{B}=\omega_{B}\hat{\mathbf{a}}_{\mathbf{y}}$)	ω_B	Variable	
Angle from $\hat{\mathbf{a}}_{z}$ to $\hat{\mathbf{c}}_{z}$ with $+\hat{\mathbf{a}}_{y}$ sense	q_C	Variable	
$\hat{\mathbf{n}}_{\mathrm{x}}$ measure of $\vec{\mathbf{r}}^{B_N/N_{\mathrm{o}}}$	x	Variable	

Form a complete set of MG road-maps for this systems's equations of motion (solution is not unique). If necessary, add more MG road-maps so there are the same number of equations as unknowns.

Variable	Translate/ Rotate	Direction (unit vector)	$\operatorname*{System}_{S}$	$_{\mathrm{of}\ S}^{\mathrm{FBD}}$	About point	$MG\ road\mbox{-}map\ equation$	Additional Unknowns
q_A	Rotate	$\widehat{\mathbf{a}}_{\mathrm{x}}$	A,B,C	Draw	B_N	$\widehat{\mathbf{a}}_{\mathbf{x}} \cdot (\vec{\mathbf{M}}^{S/B_N} = \underbrace{\frac{{}^{N}d^{N}\vec{\mathbf{H}}^{S/B_N}}{dt} + \dots)}$	
ω_B	Rotate	$\widehat{\mathbf{a}}_{\mathrm{y}}$	B, C	Draw	B_N	$\widehat{\mathbf{a}}_{\mathbf{y}} \cdot (\vec{\mathbf{M}}^{S/B_N} = \underbrace{\frac{{}^{N}d^{N}\vec{\mathbf{H}}^{S/B_N}}{dt} + \dots)}$	
q_C	Rotate	$\widehat{\mathbf{a}}_{\mathrm{y}}$	C	Draw	B_{o}	$\widehat{\mathbf{a}}_{\mathbf{y}} \cdot (\vec{\mathbf{M}}^{C/B_{\mathbf{o}}} = \frac{{}^{N} d^{N} \vec{\mathbf{H}}^{C/B_{\mathbf{o}}}}{dt} + \dots)$	
x	Translate	$\widehat{\mathbf{a}}_{\mathrm{x}}$	A,B,C	Draw	Not applicable	$\widehat{\mathbf{a}}_{\mathrm{x}} \cdot (\overrightarrow{\mathbf{F}}^{S} \underset{(20.1)}{=} m^{S} * {}^{N} \overrightarrow{\mathbf{a}}^{S_{\mathrm{cm}}})$	$*$ F_x
* Additional scalar constraint equation(s): $\dot{x} - r\omega_B = 0$							

 $\overline{\text{MG}}$ road-map for ω_B is not unique. Alternate (allows for sliding): "System" B, "About point" B_0 , "Additional unknown" F_x . **Instructor notes:** One way to eliminate F_x from this analysis is to solve $\dot{x} = r \omega_B$ and eliminate the MG road-map for x.

To move the unicycle to $x_{\text{Desired}} = 10 \text{ m}$, use a "PD control law" with $T_y = -0.3 (x - x_{\text{Desired}})$

Optional simulation:

Plot x, q_A , q_C for $0 \le t \le 12$ sec.

Use initial values:

x = 0 m $q_A = 10^{\circ}$

 $\dot{x} = 0$ $\dot{q}_A = 0$

Solution at $\underline{\mathbf{www.MotionGenesis.com}} \Rightarrow \underline{\mathbf{Get\ Started}} \Rightarrow \mathbf{Bear\ on\ rolling\ unicycle}$.

21.1.12 MG road-map: Four-bar linkage statics (2D)

The figure to the right shows a planar four-bar linkage consisting of frictionless-pin-connected uniform rigid links A, B, and C and ground N.

- Link A connects to N and B at points A_o and A_B
- Link B connects to A and C at points B_0 and B_C
- \bullet Link C connects to N and B at points C_{o} and C_{B}
- Point N_0 of N is coincident with A_0
- Point N_C of N is coincident with C_o

Right-handed orthogonal unit vectors $\hat{\mathbf{a}}_i$, $\hat{\mathbf{b}}_i$, $\hat{\mathbf{c}}_i$, $\hat{\mathbf{n}}_i$ (i = x, y, z) are fixed in A, B, C, N, with:

- $\widehat{\mathbf{a}}_{\mathbf{x}}$ directed from $A_{\mathbf{0}}$ to $A_{\mathbf{B}}$
- $\hat{\mathbf{b}}_{\mathbf{x}}$ directed from $B_{\mathbf{o}}$ to B_{C}
- $\widehat{\mathbf{c}}_{\mathbf{x}}$ directed from $C_{\mathbf{o}}$ to C_{B}
- $\hat{\mathbf{n}}_{x}$ vertically-downward
- $\widehat{\mathbf{n}}_{\mathbf{v}}$ directed from $N_{\mathbf{o}}$ to N_{C}
- $\hat{\mathbf{a}}_z = \hat{\mathbf{b}}_z = \hat{\mathbf{c}}_z = \hat{\mathbf{n}}_z$ parallel to pin axes

As in Hw 8.7, create the following "loop equation" and dot-product with $\widehat{\mathbf{n}}_{x}$ and $\widehat{\mathbf{n}}_{y}$.

$$L_A \, \widehat{\mathbf{a}}_{\mathbf{x}} + L_B \, \widehat{\mathbf{b}}_{\mathbf{x}} - L_C \, \widehat{\mathbf{c}}_{\mathbf{x}} - L_N \, \widehat{\mathbf{n}}_{\mathbf{y}} = \vec{\mathbf{0}}$$

Quantity	Symbol	Value
Length of link A	L_A	1 m
Length of link B	L_B	2 m
Length of link C	L_C	2 m
Distance between $N_{\rm o}$ and $N_{\rm C}$	L_N	1 m
Mass of A	m^{A}	10 kg
Mass of B	m^{B}	20 kg
Mass of C	m^C	20 kg
Earth's gravitational acceleration	g	$9.81 \frac{m}{s^2}$
$\hat{\mathbf{n}}_{\mathbf{y}}$ measure of force applied to C_B	H	$200\ \mathrm{N}$
Angle from $\hat{\mathbf{n}}_{\mathrm{x}}$ to $\hat{\mathbf{a}}_{\mathrm{x}}$ with $^{+}\hat{\mathbf{n}}_{\mathrm{z}}$ sense	q_A	Variable
Angle from $\hat{\mathbf{n}}_{x}$ to $\hat{\mathbf{b}}_{x}$ with $+\hat{\mathbf{n}}_{z}$ sense	q_B	Variable
Angle from $\hat{\mathbf{n}}_{\mathrm{x}}$ to $\hat{\mathbf{c}}_{\mathrm{x}}$ with ${}^{+}\hat{\mathbf{n}}_{\mathrm{z}}$ sense	q_C	Variable

Complete the following MG road-map to determine this systems's static configuration.

		0				ē .	0 0
Variable	Translate/ Rotate	Direction (unit vector)	$\mathop{\rm System}_S$	$_{\mathrm{of}}^{\mathrm{FBD}}$	About point	MG road-map equation	Additional Unknowns
q_A	Rotate	$\widehat{\mathbf{n}}_{\mathbf{z}}$	A, B	Draw	$A_{ m o}$	$\hat{\mathbf{a}}_{\mathrm{x}} \cdot \vec{\mathbf{M}}^{S/A_{\mathrm{o}}} = 0$	F_x^C, F_y^C
q_B	Rotate	$\widehat{\mathbf{n}}_{\mathbf{z}}$	B	Draw	$B_{\rm o}$	$\hat{\mathbf{a}}_{\mathbf{y}} \cdot \vec{\mathbf{M}}^{B/B_{\mathbf{o}}} = 0$	F_x^C, F_y^C
q_C	Rotate	$\widehat{\mathbf{n}}_{\mathbf{z}}$	C	Draw	$C_{ m o}$	$\hat{\mathbf{a}}_{\mathrm{y}} \cdot \vec{\mathbf{M}}^{C/C_{\mathrm{o}}} = 0$	F_x^C, F_y^C
* Additional scalar constraint equation: $ \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_C) \dot{q}_C = \frac{-L_A \sin(q_A) \dot{q}_A - L_B \sin(q_B) \dot{q}_B + L_C \sin(q_B) \dot{q}_B + $					$q_C)\dot{q}_C = 0$		
* Additional scalar constraint equation:				$L_A \cos(q_A) \dot{q}_A + L_B \cos(q_B) \dot{q}_B - L_C \cos(q_C) \dot{q}_C = 0$			

Determine the **static equilibrium** values of q_A , q_B , q_C . Use your intuition (guess), circle the **stable** solution.

_			
Solution 1	$q_A \approx 20.0^{\circ}$	$q_B \approx 71.7^{\circ}$	$q_C = 38.3^{\circ}$
Solution 2	$q_A \approx 249.3^{\circ}$	$q_B \approx 140.2^{\circ}$	$q_C = 199.1^{\circ}$
Solution 3	$q_A \approx 30.7^{\circ}$	$q_B \approx 226.1^{\circ}$	$q_C = 254.7^{\circ}$

Solution at $\underline{www.MotionGenesis.com} \Rightarrow \underline{Get\ Started} \Rightarrow \underline{Four-bar\ linkage}$

Courtesy Design Simulation Technology