8.1 • Notation, words, pictures: Position, velocity, acceleration. (Sections 3.1, 10.1)

Complete each blank with a word: point reference frame position velocity acceleration

. <u></u>	·		
$P\vec{\mathbf{r}}^Q$ $\vec{\mathbf{r}}$ denotes .	$^{N}\vec{\mathbf{v}}^{Q}$ $\vec{\mathbf{v}}$ denotes .	$^{N}\vec{\mathbf{a}}^{Q}$ $\vec{\mathbf{a}}$ denotes .	
P is a .	N is a \square .	N is a .	
Q is a \square .	Q is a \square .	Q is a \square .	
Draw $P, Q, \text{ and } {}^{P}\vec{\mathbf{r}}^{Q}.$	$\mathbf{Draw}\ Q \text{ and } N.$		
	į	i	
	İ		
		į	
i	i	;	

Statement	True or False
A point has all the attributes of a particle.	True/False
A particle has all the attributes of a point.	True/False
A point with mass (massive point) is a particle.	True/False
The center of mass of a rigid body is a point.	True/False
The center of mass of a rigid body is a particle.	True/False

Draw the bagel's center of mass **D**.

Note: The bagel's center of mass is not a piece of dough (has no mass).

8.3 Concept: What objects have a unique velocity/acceleration? (Section 10.1)

The velocity $\vec{\mathbf{v}}$ of some object S relative to Earth E is to be determined (denoted ${}^{E}\vec{\mathbf{v}}^{S}$). This object S could be a (circle **all** objects that have an **unambiguously** defined velocity $\vec{\mathbf{v}}$):

Real number	Line	Set of points	Center of a circle
Vector	Triangle	Reference frame	Mass center of set of particles
Matrix	Point	Rigid body	Mass center of a rigid body
3D orthogonal basis	Particle	Flexible body	System of particles and bodies

Repeat for the acceleration $\vec{\mathbf{a}}$ of some object S relative to Earth E (denoted $^{E}\vec{\mathbf{a}}^{S}$) box appropriate objects.

8.4 \clubsuit Cartesian coordinates, acceleration, and $\vec{F} = m \vec{a}$. (Sections 10.1, 10.7)

The following figure shows a baseball P of mass m moving over a baseball field (reference frame N). P's position vector $\vec{\mathbf{r}}$ from point N_0 (home-plate) is de-

scribed with *Cartesian coordinates* x(t), y(t), z(t).

• Form $\vec{\mathbf{r}}$ and P's velocity and acceleration in N.

 $\vec{\mathbf{r}} = x \, \hat{\mathbf{n}}_{x} + \overline{\mathbf{n}}_{v} + \overline{\mathbf{n}}_{v}$ Result: $\vec{\mathbf{v}} = \dot{x} \, \hat{\mathbf{n}}_{x} + \hat{\mathbf{n}}_{v} + \hat{\mathbf{n}}_{v} + \hat{\mathbf{n}}_{v}$ $\vec{\mathbf{a}} = \ddot{x} \, \hat{\mathbf{n}}_{x} + \overline{\hat{\mathbf{n}}_{v}} + \overline{\hat{\mathbf{n}}_{z}}$

- $\vec{\mathbf{F}} = m \vec{\mathbf{a}}$ Assuming the net force on the baseball is $\vec{\mathbf{F}}_{\mathrm{Net}} = -m g \hat{\mathbf{n}}_{\mathrm{z}}$, solve for \ddot{x} , \ddot{y} , \ddot{z} . Result: \Rightarrow $\ddot{x} = 0$ $\ddot{y} =$ $\ddot{z} =$ $\vec{\mathbf{F}}_{\mathrm{Net}}$
- At time t=0, the baseball is hit from N_0 (home-plate) with initial motion $\dot{x}(0)=20~\frac{\mathrm{m}}{\mathrm{s}},~\dot{y}(0)=25~\frac{\mathrm{m}}{\mathrm{s}}$ $\dot{z}(0) = 30 \, \frac{\text{m}}{\text{s}}$. Determine x(t), y(t), z(t) (in terms of g, t and initial values).

363

x(t) = 20t y(t) = 20t $z(t) = -\frac{1}{2}$ Result: