
Chapter 34

Energy integrals of equations of motion

Summary

This chapter discusses generalized potential energy and its use in various energy integrals of the
equations of motion, e.g., the new generalized dissipative energy integral, generalized energy in-
tegral, and generalized Hamiltonian. Energy integrals have several purposes, including,

• An energy integral can serve as a check on the numerical accuracy of dynamic simulations.
• An energy integral can be used to moderate numerical integration to ensure global numerical inte-

gration accuracy of the energy integral to within a user-specified tolerance.

34.1 Various energy integrals of the equations of motion

When the configuration and motion of a system S in a Newtonian frame
N is described by n generalized coordinates q1 ... qn and n general-
ized speeds u1 ... un, then an energy integral of the equations of
motion is an equation of the form shown in eqn (1).

f(q1 ... qn, u1 ... un, t) = C (1)

where C is a constant with
units of energy and t is time.

This section discusses the generalized dissipative energy integral and its special cases.
Energy integral Equation Constant when:
Generalized dissipative energy integral EZ =

(2)
K2 + U + Z always

Generalized energy integral E =
(5)

K2 + U Pnonconservative = 0, σR = 0

Generalized Hamiltonian H =
(6)

K2 − K0 + U Pnonconservative = 0, σ = 0

Hamiltonian H =
(8)

K2 − K0 + U Pnonconservative = 0, σ = 0, U = U
Conservation kinetic + generalized potential C =

(9)
K + U Pnonconservative = 0, σ = 0, K̇0 = K̇1 = 0

Conservation of mechanical energy C =
(10)

K + U Pnonconservative = 0, σ = 0, K̇0 = K̇1 = 0, U = U

34.1.1 The generalized dissipative energy integral (Mitiguy)

The generalized dissipative energy integral states that for any system
S of ν particles Q1 ... Qν possessing p independent generalized speeds u1 ... up

in a Newtonian reference frame N , one can define a constant EZ .
EZ � K2 + EZ + Z (2)

EZ has units of energy.
A system is said to have p-degrees of freedom if its motion can be described by p independent variables.
The generalized dissipative energy integral is Mitiguy’s improvement of an integral developed by Kane and Levinson [46, 47].

• K2 is the kinetic energy of S in N of degree 2 in u1 ... up (see Section 34.4)

• U is the portion of the system that has a generalized potential energy (see Sections 34.6 and 34.7).
• Z is the energy-quantity defined by the differential equation that
relates Z to σR [see eqn(4)] and Pnonconservative (see Section 34.6), by

dZ

dt
� σR − Pnonconservative (3)
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The quantity σR in eqn (3) is defined in terms of mi (the mass of particle

Qi) and quantities relating to �vQi (Qi’s velocity in N), as
σR �

ν∑
i = 1

mi�v
Qi

R ·············
N
d�vQi

t

dt
(4)

σR for a rigid body is in eqn(29).

where �vQi

R is the portion of �vQi that contains the independent generalized speeds u1 ... up; �vQi
t is the

portion of �vQi that does not contain u1 ... up; and
Nd �vQi

t
dt

is the time-derivative in N of �vQi
t .

34.1.2 The generalized energy integral

When σR = 0 and Pnonconservative = 0, Z = 0 satisfies eqn (3), so eqn (2) simplifies
to eqn (5). An example of conservation of this generalized energy integral is in Section 34.2. E = K2 + U (5)

34.1.3 The Hamiltonian integrals

For a system S having p independent generalized speeds u1 ... up in a New-
tonian frame N , the generalized Hamiltonian H defined in eqn (6) is
conserved (constant) if both Pnonconservative (see Section 34.6) and the quan-
tity σ (defined right) are zero.
K2 and U have the same meaning as in Section 34.1.1 and K0 is the kinetic energy of

S in N of degree 0 in u1 ... up (see Section 34.4). Note: The quantity σ defined in

terms of �vQi is slightly different than σR which is defined in terms of �vQi
R .

H � K2 − K0 + U (6)

σ �
ν∑

i =1

mi�vQi ·············
N
d�vQi

t

dt
(7)

σ for a rigid body is in eqn(30).

When S also possesses a potential energy U, (i.e., the generalized potential energy

U of Section 34.6 is equal to the potential energy U of Section 34.7), a conserved
quantity called the Hamiltonian is defined as shown in eqn (8).

H � K2 − K0 + U (8)

34.1.4 Conservation of kinetic and generalized potential energy

A system S is said to conserve kinetic and generalized potential energy when,
in addition to satisfying the conditions in eqn (6), K̇0 = K̇1 = 0 (or equivalently,

K̇ = K̇2). Under these conditions, the sum of kinetic energy and generalized
potential energy of S in N is equal to a constant C, as shown in eqn (9).

C = K + U (9)

34.1.5 Conservation of mechanical energy

A system S is said to conserve mechanical energy when, in addition to sat-
isfying the conditions in equation (9), S possesses a potential energy U, (i.e., the
generalized potential energy U of Section 34.6 is equal to the potential energy U of Sec-
tion 34.7). Under these conditions the sum of kinetic energy and potential energy
of S in N is equal to a constant C, as shown in eqn (10).

C = K + U (10)

34.2 Example: Conservation of generalized energy

The figure to the right shows a rigid body B attached by a revolute
joint to a hoist Q which slides on a horizontal track that is fixed
in a Newtonian reference frame N . The distance of Q from a point
No fixed in N is controlled by a translational motor so that x is a
specified (i.e., prescribed or known) function of time. The rotational
motion of B about n̂x is the system’s one-degree of freedom.

Right-handed orthogonal unit vectors n̂x, n̂y, n̂z are fixed in N
with n̂x horizontally-right and n̂y vertically-upward. Right-handed
orthogonal unit vectors b̂x, b̂y, b̂z are fixed in B. Initially, b̂i = n̂i

(i = x, y, z) and then B is subjected to a right-hand rotation about
b̂x = n̂x by an amount θ.

nx=bx

L

Q
x

B
Bcm

by

No

ny
nz

N
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Quantity Symbol Type Value
Mass of Q mQ Constant 1.0 kg
Mass of B mB Constant 2.0 kg
Distance from revolute joint to Bcm (B’s mass center) L Constant 0.5 m
B’s moment of inertia about Bcm for b̂x I Constant 0.0416̄ kg∗m2

Earth’s gravitational constant g Constant 9.8 m/s2

Distance between Q and No (a point fixed in N) x(t) Specified 3∗ cos(t)
Angle from n̂y to b̂y with +n̂x sense θ(t) Variable 30◦ (initial)

The equation governing B’s rotational motion in N is1

θ̈ +
mB g L

I + mB L2
sin(θ) = 0

This system’s generalized potential energy is B’s gravitational potential energy2

U = -mB g L cos(θ)

The system’s kinetic energy and kinetic energies of degree 0 and 2 are

K =
1
2

(mB +mQ) ẋ2 +
1
2

(I +mB L2) θ̇2 K0 =
1
2

(mB +mQ) ẋ2 K2 =
1
2

(I +mB L2) θ̇2

Expressions for C (the sum of K and U ), the generalized
energy E , and the generalized Hamiltonian H , area

C =
(9)

K + U
E =

(5)
K2 + U

H =
(6)

K2 − K0 + U

By simulating the motion of the system for 10 seconds
and plotting C , E , and H, one sees that E is constant
whereas C and H are not constant.

aThis system does not possess a potential energy. Hence, it cannot
conserve mechanical energy or Hamiltonian.
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The point of this simple example is to demonstrate that for this system, generalized energy E is
an integral of the equations of motion whereas the generalized Hamiltonian H and the sum K + U are
not. The reason that the generalized energy is constant follows directly from the fact that both σR and
Pnonconservative are zero, hence equation (2) simplifies to equation (5). The reason that the generalized
Hamiltonian H varies follows directly from the fact that (see Section 34.1.3)

σ = (mB + mQ) ẋ ẍ

which means that H is not constant unless ẍ = 0.
If it were the case that ẍ = 0 (ẋ = constant), H, E , and C would only differ by a constant because with ẋ constant, K0

is also constant. In addition, with ẍ = 0, the force that causes Q to translate, [equal to (mQ+mB) ẍ], would be zero so that

potential energy would exist and be equal to generalized potential energy, i.e., U = U . In light of Sections 34.1.3 and 25.2,

this would also mean that the Hamiltonian and mechanical energy would be constant.

1One advantage of forming equations of motion with “system methods” (e.g., Lagrange & Kane) as opposed to free-body
methods is that system methods can eliminate from its equations the force that causes Q to translate with a specified x(t).

2This system does not have a potential energy because the force that causes Q to translate is time-dependent.
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34.3 Example: Energy integrals of equations of motion

The robotic positioning device to the right consists of three rigid bodies A, B, and C. Body C is a uniform
solid sphere that rolls on a flat Earth-fixed horizontal plane N .

Body B is relatively light and consists of two rigidly con-
nected parts: a hemispherical housing that connects it
to C; and a long extensionally-flexible tube that allows
translation (but not rotation) of B relative to A. Body A
is made to rotate by a motor at a specified rate about an
Earth-fixed vertical shaft. Right-handed orthogonal unit
vectors âx, ây, âz are fixed in A with âx parallel to the
tube and ây vertically-upward.

ax
ay

az

C
Ccm

Ω

r

L s

N

A
B

Quantity Symbol Type Values(s)
Mass of C m Constant 1 kg
Radius of C r Constant 0.1 m
Distance from vertical axis to distal end of A L Constant 1 m
Linear spring constant modeling flexibility in tube k Constant 200 N

m
or ∞

Linear viscous damping constant for fluid between B and C b Constant 0 or 2 N∗s
m

Known rate of rotation of A in N about vertical axis Ω(t) Specified 4 rad
sec

or 0.5 ∗ t rad
sec

Stretch of spring that models flexibility in tube s(t) Variable 0 m
s

(initial)

âx measure of C’s angular velocity in N ωx(t) Variable varies (constrained)

ây measure of C’s angular velocity in N ωy(t) Variable 0 rad
sec

(initial)

âz measure of C’s angular velocity in N ωz(t) Variable varies (constrained)

Equations of motion for this rolling system are3

ωx = -L+s
r Ω Rolling constraint equation

ωz = -1
r ṡ Rolling constraint equation

0.4m r2 ω̇y + b ωy = bΩ Kane’s equation for generalized speed ωy

1.4m r2 s̈ + b ṡ +
(
k − 1.4mΩ2

)
r2 s = 1.4m r2 LΩ2 Kane’s equation for generalized speed ṡ

This system’s generalized potential energy is the spring’s potential energya

aEven with no damping (b = 0), this system does not have a potential energy because
the torque that causes A to rotate is time-dependent.

U =
1
2

k s2

The system’s kinetic energy and kinetic energies of degree 0 and 2 are

K = 0.2m
[
3.5 (L+s)2 Ω2 + 3.5 ṡ2 + r2 ω2

y

]
K0 = 0.7m(L+s)2 Ω2 K2 = 0.2m(3.5 ṡ2 + r2 ω2

y)

By simulating this system’s motion for 4 seconds for various values of Ω, k, and b and plotting energy
quantities as shown in Figure 34.1, one can make the following observations:

• The generalized dissipative energy integral EZ = K2 + U + Z is constant for all simulations.

• The generalized energy integral E = K2 + U is constant when there is no damping and ṡ = 0 (the tube
is rigid). Section 34.1.1 describes the conditions in which E is constant.
Since σR = -1.4mΩ2 (L + s) ṡ, and Pnonconservative is zero when b = 0, E is constant when ṡ = 0 and b = 0.

• The generalized Hamiltonian H = K2 −K0 + U is constant when there is no damping and Ω is constant.
Section 34.1.3 describes the conditions in which H is constant.
Since σ = 1.4 mΩ Ω̇ (L + s)2, and Pnonconservative is zero when b = 0, H is constant when Ω̇ = 0 and b = 0.

• The sum of kinetic and generalized potential energy C = K + U is not constant for any of the simulations.

3It is advantageous to form equations of motion with Kane’s method because Kane’s method eliminates from its equation
the torque that causes A to rotate at the specified rate Ω(t) and the forces (or Lagrange multipliers) that cause C to roll.
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Figure 34.1: Time histories of EZ , E , H, and C

Checking numerical integration accuracy

An energy integral can check the numerical accuracy of
dynamic simulations. To demonstrate this, two simulations
were run for 30 sec. Both simulations used Ω = 0.5 ∗ t rad

sec ,
k = 200 N

m , b = 2 N∗s
m , and a numerical integration step

of 0.1 sec. The numerical integration error tolerances on
the first simulation were 1.0 x 10-5 whereas the second used
1.0 x 10-2. Since EZ is constant for any system governed
by �F = m�a, one can see that the simulation results for the
second simulation were less accurate than the first. -0.05
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34.4 Kinetic energy terms

The kinetic energy K of a system S possessing p independent generalized
speeds u1 ... up in a reference frame N can be expressed in terms of
portions of K that are of degree 0, 1, 2 in u1 ... up as shown right.

K = K0 + K1 + K2 (11)

To precisely define K0, K1, K2, consider a particle Qi moving in frame N
with a velocity �vQi . As shown in eqn (28.10), �vQi can always be written

in terms of ∂ N�vPi

∂ur
(the ur partial velocity of Qi in N) and �vQi

t (the portion

of �vQi that does not contain u1 ... up) as shown in eqn (12), where �vQi

R is
defined as the portion of �vQi that contains u1 ... up.

�vQi =
p∑

r = 1

∂ �vQi

∂ur
ur︸ ︷︷ ︸

�vQi

R

+ �vPi
t (12)

When a system S consists of ν particles Qi (i = 1... ν) of mass mi, K0, K1, K2 are defined below.4

For a rigid body B, more useful expressions for K0, K1, K2 are also provided.

K0 � 1
2

ν∑
i =1

mi �v
Qi
t ············· �vQi

t K0 = 1
2 mB �vBp

t ············· �vBp

t + 1
2

�ωωωωωωωωωωωωωt ·············
⇒
I

B/Bp

············· �ωωωωωωωωωωωωωt

K1 �
ν∑

i =1
mi �v

Qi
t ············· �vQi

R K1 = mB �vBp

t ············· �vBp

R + �ωωωωωωωωωωωωωt ·············
⇒
I

B/Bp

············· �ωωωωωωωωωωωωωR

K2 � 1
2

ν∑
i =1

mi �v
Qi

R ············· �vQi

R K2 = 1
2 mB �vBp

R ············· �vBp

R + 1
2

�ωωωωωωωωωωωωωR ·············
⇒
I

B/Bp

············· �ωωωωωωωωωωωωωR

(13)

• mB is the mass of B and
⇒
I

B/Bp

is B’s inertia dyadic about Bp.
• Bp is either the mass center of B or a point fixed in both B and N . �vBp is Bp’s velocity in N .
• �vBp

R is the portion of �vBp that contains u1 ... up whereas �vBp

t is the portion without u1 ... up.
• �ωωωωωωωωωωωωωR is the portion of �ωωωωωωωωωωωωω (B’s angular velocity in N) that contains u1 ... up.
• �ωωωωωωωωωωωωωt is the portion of �ωωωωωωωωωωωωω without u1 ... up.

34.5 Generalized power and generalized work

The generalized power of the resultant of all forces �F
Q

on a point Q in
a reference frame N is denoted PQ and is defined in terms of �vQ

R as
PQ � �F

Q ············· �vQ
R (14)

The generalized power of a set S of forces �F
Q1 ...�F

Qν that act on points
Q1 ... Qν , respectively, is denoted P and is defined asa

aAn alternate expression is P =
p�

r = 1

Fr∗ur where Fr (r = u1, ..., up) are Kane’s gener-

alized forces [36, p. 99]. This derivation is found in equation (22).

P �
ν∑

i = 1

PQi (15)

The generalized work of a set S of forces in reference frame N is denoted W
and is defined by an integral (or differential equation) that relates it to P as

W �
∫ P dt

or dW
dt

� P
(16)

34.6 Generalized potential energy

In certain situations, the integral in equation (16) results in an expression that is a function of only
configuration (position and orientation), i.e., it is not a function of motion or an explicit function of time.
When this occurs, the negative of the integral is called a generalized potential energy of S in N , i.e.,

U = -W if and only if W is solely a function of configuration (17)
4These definitions are equivalent, but computationally more efficient, to those found in [36, pg. 151].
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As mentioned in Section 34.5, S is a set of forces and P is calculated with a sum. It is helpful to split P
into two terms called the “conservative generalized power” and the “nonconservative generalized power”
so that generalized work can be written as shown in equation (18).

P = Pconservative + Pconservative

W =
(16)

∫
Pconservative ∗ dt +

∫
Pnonconservative ∗ dt (18)

By definition, Pconservative is the sum of terms in P whose time-integral results in an expression that is
a function of only configuration, and Pnonconservative is the remaining terms in P . When Pconservative is
non-zero, the portion of the system that has a generalized potential energy is denoted U and is defined as

U � -
∫ Pconservative∗dt (19)

In view of equations (18) and (19), the generalized work of S in N can be expressed

W =
(18, 19)

-U +
∫

Pnonconservative∗dt (20)

34.7 Classical vs. generalized power, work, and potential energy

The following table compares the classical definitions of power, work, and potential energy to their gen-
eralized counterparts. The small differences in these definitions are important in forming integrals of the
equation of motion.

Quantity Classical definition Generalized definition
Power P � �F ············· �v P � �F ············· �vR

Work W �
∫

P ∗dt W �
∫ P ∗dt

Potential energy U � -W U � -W
(if and only if W is solely a function of configuration) (if and only if W is solely a function of configuration)

As is apparent, the classical definition of power uses �v whereas the definition of generalized power uses
�vR. In view of equation (12), the difference between these two definitions is �F ············· �vt where �vt is the portion
of �v that does not contain u1 ... up. As a result, the differences between the classical and generalized
definitions of power, work, and potential energy are associated with actuators or motors that move parts
of a system at a specified (i.e, prescribed or known) rate. Consequently, there are situations where U exists
but U does not (see Section 34.2).

When �vt does not contribute to the power of gravitation, electrostatics, or elastic forces, the generalized
potential U and potential energy U are identical.

34.8 Generalized forces and potential energy

Consider a system S having n generalized coordinates q1 ... qn, n generalized speeds u1 ... un, and m motion
constraints so there are p � n−m independent generalized speeds u1 ... up in a Newtonian reference frame.
When a generalized potential energy U exists, the generalized forces Fr are related to U by

Fr = -
n∑

s= 1

∂U
∂qs

∗ ∂q̇s
∂ur

(r = u1, ..., up)
If m = 0 (no constraints)

and ur � q̇r, then:
Fr =

-∂U
∂q (r = 1, ..., n) (21)
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If a potential energy U exists, equation (21) can be modified by replacing U with U. Equation (21) can
be used to calculate the unconstrained (holonomic) generalized forces by considering q̇s as a function of
u1 ... un instead of u1 ... up.

Optional: Proof of generalized forces from potential energy
To establish the validity of equation (21), start by noting that the generalized power P of a set S of forces
�F

Q1 ...�F
Qν that act on points Q1 ... Qν , respectively, is equal to

P =
(14 15)

ν∑
i= 1

�F
Qi ············· �vQi

R =
(12)

ν∑
i =1

�F
Qi·············

( p∑
r =1

∂�vQi

∂ur
∗ur

)
=

p∑
r = 1

( ν∑
i =1

�F
Qi ············· ∂�vQi

∂ur

)
∗ur =

p∑
r =1

Fr∗ur (22)

where Fr are Kane’s generalized forces [36, p. 99]. In view of equations (16) and (17), P and U are
related, and with equation (22), the generalized potential energy and generalized forces are related by

dU
dt

=
(16 17)

-P =
(22)

-
[F1 . . Fp

] u1

··
up

 (23)

By definition, U is solely a function of configuration, so U = U (q1, q2, . . . , qn) and

dU
dt

=
∂U
∂q1

q̇1 + . . .
∂U
∂qn

q̇n =
[

∂U
∂q1

. . .
∂U
∂qn

] q̇1
...

q̇n

 (24)

Since the generalized speeds are always defined as linear combinations of time-derivatives of generalized
coordinates, q̇1 ... q̇n can always by related to u1 ... up as q̇1

...
q̇n

 =

w11 . . w1p
...

...
...

wn1 . . wnp


u1

··
up

 +

 x1
...

xn

 (25)

where wij and xi (i=1 ... n, j=1 ... p) are functions of q1 ... qn and time. Substituting equation (25) into
equation (24) and subsequently using equation (23) produces

dU
dt

=
[
∂U
∂q1

. . .
∂U
∂qn

]
w11 . . w1p

...
...

...
wn1 . . wnp


u1

··
up

 +

 x1
...

xn


 = -

[F1 . . Fp

] u1

··
up

 (26)

Since u1 ... up are independent:
[
∂U
∂q1

. . .
∂U
∂qn

]w11 . . w1p
...

...
...

wn1 . . wnp

 =
(26)

-
[F1 . . Fp

]
(27)

[
∂U
∂q1

. . .
∂U
∂qn

] x1
...

xn

 =
(26)

0 (28)

Since equation (25) shows wij = ∂q̇i
∂uj

, equation (27) leads directly to equation (21). When a potential

energy U exists, equation (21) can be modified by replacing U with U. The proof of this is nearly identical,
except that one uses the fact that power P and potential energy U are related by dU

dt
= -P.
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34.9 Expressions for σR and σ for a rigid body

σB
R = mB ∗�vBp

R ·············
N
d�vBp

t

dt
+ �ωωωωωωωωωωωωωR ·············

⇒
I ·············

B
d�ωωωωωωωωωωωωωt

dt
+ �ωωωωωωωωωωωωωR ·············

(
�ωωωωωωωωωωωωωt ×

⇒
I ············· �ωωωωωωωωωωωωω

)
(29)

σB = mB ∗�vBp ·············
N
d�vBp

t

dt
+ �ωωωωωωωωωωωωω ·············

⇒
I ·············

N
d�ωωωωωωωωωωωωωt

dt
(30)

• mB is the mass of B and
⇒
I is B’s inertia dyadic about Bp.

• Bp is either the mass center of B or a point fixed in both B and N . �vBp is Bp’s velocity in N .
• �vBp

R is the portion of �vBp that contains u1 ... up whereas �vBp

t is the portion without u1 ... up.
• �ωωωωωωωωωωωωωR is the portion of �ωωωωωωωωωωωωω (B’s angular velocity in N) that contains u1 ... up.
• �ωωωωωωωωωωωωωt is the portion of �ωωωωωωωωωωωωω without u1 ... up.

Optional: Proof of σ
R

and σ for a rigid body
To establish the validity of equation (29), start by noting that σB

R of a set of β particles B1 ... Bβ of a rigid
body B possessing p independent generalized speeds u1 ... up in a reference frame N is defined as

σB
R �

(4)

β∑
i = 1

mBi �vBi
R ·············

N
d�vBi

t

dt
(31)

• mBi is the mass of Bi

• �vBi
R is the portion of �vBi (the velocity of Bi in N) that contains u1 ... up

• �vBi
t is the portion of �vBi that does not contain u1 ... up

•
Nd�vBi

t
dt

is the time-derivative in N of �vBi
t

It has been shown [36, p. 45] that B’s angular velocity in N
can always be written in terms of B’s partial angular velocity in
N for ur and �ωωωωωωωωωωωωωt (the portion of �ωωωωωωωωωωωωω that does not contain u1 ... up),
as shown in equation (32). By defining �ωωωωωωωωωωωωωR as the portion of
�ωωωωωωωωωωωωω that contains u1 ... up, i.e., as shown in equation (33), B’s
angular velocity in N can be written as given in equation (34).

�ωωωωωωωωωωωωω =
p∑

r = 1

∂ �ωωωωωωωωωωωωω

∂ur
∗ ur + �ωωωωωωωωωωωωωt (32)

�ωωωωωωωωωωωωωR �
p∑

r = 1

∂ �ωωωωωωωωωωωωω

∂ur
∗ ur (33)

�ωωωωωωωωωωωωω = �ωωωωωωωωωωωωωR + �ωωωωωωωωωωωωωt (34)

The next step in the proof is to introduce a point Bp that is fixed on B and is either the mass center of B
or a point fixed in N . Since �vBi (the velocity of Bi in N) and �vBp (the velocity of Bp in N) are related
by �ωωωωωωωωωωωωω and �ri (Bi’s position from Bp), as

�vBi =
(10.3)

�vBp + �ωωωωωωωωωωωωω ×�ri (35)

it can be shown that

�vBi
R =

(34 35)
�vBp

R + �ωωωωωωωωωωωωωR ×�ri (36)

�vBi
t =

(34 35)
�vBp

t + �ωωωωωωωωωωωωωt ×�ri (37)

Time-differentiation of equation (37) in reference frame N gives

N
d�vBi

t

dt
=

(37)

N
d�vBp

t

dt
+

B
d �ωωωωωωωωωωωωωt

dt
×�ri + �ωωωωωωωωωωωωω × (�ωωωωωωωωωωωωωt ×�ri) (38)
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Substituting equations (36) and (38) into equation (31) gives

σB
R =

(31)

β∑
i =1

mBi

(
�vBp

R + �ωωωωωωωωωωωωωR ×�ri

)
(36)

·············
[

N
d�vBp

t

dt
+

B
d�ωωωωωωωωωωωωωt

dt
×�ri + �ωωωωωωωωωωωωω × (�ωωωωωωωωωωωωωt ×�ri)

]
(38)

(39)

Distributing the dot-product and making use of the fact that since Bp is either the mass center of B or a
point fixed in N ,5

β∑
i = 1

mBi �ri = �0 or �vBp

R = �0 (40)

and using the fact that mB �
β∑

i =1
mBi and that for any vectors �a, �b and �c, �a×�b ·············�c = �a ·············�b×�c, leads to

σB
R =

(39 40)
mB �vBp

R ·············
N
d�vBp

t

dt
+ �ωωωωωωωωωωωωωR ·············

β∑
i =1

mBi �ri × (
B
d�ωωωωωωωωωωωωωt

dt
×�ri) + �ωωωωωωωωωωωωωR ·············

β∑
i =1

mBi �ri × [�ωωωωωωωωωωωωω × (�ωωωωωωωωωωωωωt ×�ri)] (41)

Focusing attention on the summation in the second term on the right-hand side of equation (41) and
making use of the vector identity �a× (�b×�c) = (�a ·············�c)�b +�c(�a ·············�b) and then the definition6 of the inertia
dyadic of B about Bp, one finds

β∑
i = 1

mBi �ri × (
B
d�ωωωωωωωωωωωωωt

dt
×�ri) =

β∑
i =1

mBi

[
(�ri ·············�ri)

B
d�ωωωωωωωωωωωωωt

dt
− �ri(�ri ·············

B
d�ωωωωωωωωωωωωωt

dt
)

]

=

{
β∑

i =1

mBi

[
(�ri ·············�ri) ∗

⇒
1 − �ri ∗�ri

]}
·············

B
d�ωωωωωωωωωωωωωt

dt
=

⇒
I ·············

B
d�ωωωωωωωωωωωωωt

dt
(42)

Focusing attention on the summation in the third term on the right-hand side of equation (41) and again
making use of the vector identity �a× (�b×�c) = (�a ·············�c)�b +�c(�a ·············�b) and then a relationship7 between the
summation

∑n
i = 1 mQi �ri ∗�ri and the inertia dyadic of B about Bp, one finds

β∑
i =1

mBi �ri × [�ωωωωωωωωωωωωω × (�ωωωωωωωωωωωωωt ×�ri)] =
β∑

i =1

mBi �ri × [�ωωωωωωωωωωωωωt ∗ (�ωωωωωωωωωωωωω ·············�ri) − �ri ∗ (�ωωωωωωωωωωωωω ············· �ωωωωωωωωωωωωωt)]

= �ωωωωωωωωωωωωω ·············
(

β∑
i = 1

mBi �ri ∗�ri

)
× �ωωωωωωωωωωωωωt

=
(16.15)

�ωωωωωωωωωωωωω ·············
[
1
2

trace(
⇒
I ) ∗ ⇒

1 −
⇒
I
]
× �ωωωωωωωωωωωωωt

=
1
2

trace(
⇒
I ) ∗ �ωωωωωωωωωωωωω × �ωωωωωωωωωωωωωt − �ωωωωωωωωωωωωω ·············

⇒
I × �ωωωωωωωωωωωωωt

=
(34)

1
2

trace(
⇒
I ) ∗ �ωωωωωωωωωωωωωR × �ωωωωωωωωωωωωωt − �ωωωωωωωωωωωωω ·············

⇒
I × �ωωωωωωωωωωωωωt (43)

Pre-dot multiplication of equation (43) with �ωωωωωωωωωωωωωR gives

�ωωωωωωωωωωωωωR ·············
β∑

i = 1

mBi �ri × [�ωωωωωωωωωωωωω × (�ωωωωωωωωωωωωωt ×�ri)] =
(43)

-�ωωωωωωωωωωωωωR ·············
(

�ωωωωωωωωωωωωω ·············
⇒
I × �ωωωωωωωωωωωωωt

)
= �ωωωωωωωωωωωωωR ·············

(
�ωωωωωωωωωωωωωt ×

⇒
I ············· �ωωωωωωωωωωωωω

)
(44)

Substitution of equation (42) into the second term on the right-hand side of equation (41) and substitution
of equation (44) for the third term on the right-hand side of equation (41) produces equation (29).

5The first relationship in equation (40) is the definition of the center of mass of B.

6The definition of the inertia dyadic of B about Bp is
⇒
I �

β�
i = 1

mBi

�
(�ri ·············�ri) ∗

⇒
1 − �ri ∗�ri

�

7The relationship between the summation and the inertia dyadic used here is
n�

i = 1

mQi �ri ∗�ri = 1
2

trace(
⇒
I ) ∗ ⇒

1 −
⇒
I .
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34.10 Optional: Proof of the generalized energy integral

To establish the validity of equation (2), start by noting that the law of motion relates �F
Qi

(the resultant
of all forces on a particle Qi) with mQi (the mass of Qi) and �aQi (the acceleration of Qi in a Newtonian reference
frame N), by

�F
Qi = mQi ∗ �aQi (45)

Dot-multiplication of both sides of equation (45) with �vQi

R gives

�F
Qi ············· �vQi

R =
(45)

mQi ∗ �aQi ············· �vQi

R (46)

The definitions of PQi (the generalized power of Qi in N) and �aQi (the acceleration of Qi in N) are

PQi �
(14)

�F
Qi ············· �vQi

R �aQi �
N
d �vQi

dt
(47)

Hence, equation (46) can be re-expressed as

PQi =
(46 47)

mQi ∗
N
d �vQi

dt
············· �vQi

R (48)

Equation (12) showed �vQi can be expressed as �vQi = �vQi

R + �vQi
t so equation (48) can be rearranged to

PQi =
(48 12)

mQi ∗
N
d �vQi

R

dt
············· �vQi

R + mQi ∗
N
d �vQi

t

dt
············· �vQi

R (49)

To show that the first term on the right-hand side of equation (49) is the time-derivative of KQi
2 (the

kinetic energy of Qi in N of degree 2 in u1 ... up), note that the definition of KQi
2 is

KQi
2 �

(13)

1
2

mQi ∗ �vQi
R ············· �vQi

R (50)

Time-differentiation of both sides of equation (50) leads to

dKQi
2

dt
=

(50)
mQi ∗

N
d �vQi

R

dt
············· �vQi

R (51)

Since the first term on the right-hand side of equation (49) is identical to the right-hand side of equation (51)
and since the second term on the right-hand side of equation (49) is by definition [see equation (4)] σQi

R ,
equation (49) can be re-expressed as

PQi =
(49)

dKQi
2

dt
(51)

+ σQi

R
(4)

(52)

When a system S consists of ν particles Q1 ... Qν , equation (52) can be applied to each particle and the
resulting set of equations can be summed, yielding

ν∑
i =1

PQi =
(52)

ν∑
i= 1

d KQi
2

dt
+

ν∑
i = 1

σQi

R (53)

Interchanging the derivative and summation on the right-hand side of equation (53) produces

n∑
i = 1

NPQi =
(53)

d

dt

(
n∑

i= 1

KQi
2

)
+

ν∑
i= 1

σQi

R (54)
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Since P (the generalized power of S in N), K2 (the kinetic energy of S in N), and σR are defined as

P �
(15)

ν∑
i = 1

PQi K �
(13)

ν∑
i =1

KQi σR �
(4)

ν∑
i = 1

σQi

R (55)

equation (54) may be rewritten as

P =
(54 55)

dK2

dt
+ σR (56)

Time-integration of equation (56) and subsequent rearrangement gives

EZ =
(56)

K2 +
∫

σR ∗ dt −
∫
P ∗ dt (57)

where EZ is an arbitrary constant of integration having units of energy. Combining the information in
equation (16) and equation (20), leads to

EZ =
(57)

K2 +
∫

σR ∗ dt + U −
∫

Pnonconservative ∗ dt (58)

Defining Z as was done in equation (3) leads directly to equation (2).
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