Complex numbers, circuits, Laplace transforms, frequency response, motors and sensors Show work – except for ♣ fill-in-blanks (print .pdf from www.MotionGenesis.com ⇒ Textbooks ⇒ Resources).

8.1 Euler's formula and trigonometry functions (Chapter 15).

Show every step to express the right-hand side of the following expressions in terms of trigonometric functions of the real scalar variable θ (without the imaginary number i).

$$\frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{e^{i\theta}}{2i} = \frac{e^{i\theta}}{2i} = \frac{e^{i\theta}}{2$$

$$\frac{e^{i\theta} - e^{-i\theta}}{2i} = \square$$

8.2 \ Putting real, imaginary, and complex numbers in magnitude-phase form (Section 15.1).

Clearly **mark** each of the following number's location in the complex plane.

Next, express the number in the magnitude-phase form $z = |z| e^{(\theta+2\pi n)i}$, where

- |z| is the magnitude of z and n is any integer (e.g., n = 0, 1, 2, ...)
- $-\pi \le \theta \le \pi$ is the angle between the positive real axis and the line connecting 0 to z

Using magnitude-phase form, show (-2) * (-2) = +4.

$$(-2)*(-2) = \left[2e^{(-1)}\right]*\left[2e^{(-1)}\right]*\left[2e^{(-1)}\right] = 4e^{(-1)}$$

8.4 \$\infty\$ Complex numbers and exponentiation (Section 15.6).

Find **all** complex numbers (in Cartesian form) equal to the following.

239

8.5 ♣ Optional: How does a number change when multiplied by -1 or exponentiation by -1.

For each value of z below, compare the magnitudes of z and $z_a = -z$ by completing the blank in the 2^{nd} column with < or = or >. Complete the 3^{rd} and 4^{th} columns with the phase of zand phase of z_a (in degrees). Similarly for $z_b = z^{-1}$.

	$z_a = -z$			$z_b = z^{-1}$		
z	Compare $ z $ to $ z_a $	$\angle z$	$\angle z_a$	Compare $ z_b $ to $ z $	$\angle z$	$\angle z_b$
1	$ z $ $ z_a $	0	0	$ z $ $ z_b $	O	0
4	$ z $ $ z_a $	0	0	$ z $ $ z_b $	o	0
-4	$ z $ $ z_a $	O	0	$ z $ $ z_b $	0	O
4i	$ z $ $ z_a $	0	0	$ z $ $ z_b $	0	0
-4i	$ z $ $ z_a $	°	0	$ z $ $ z_b $	O	O
0.4i	$ z $ $ z_a $	0	0	$ z $ $ z_b $	°	0
-0.4i	$ z $ $ z_a $	°	°	$ z $ $ z_b $	0	0
1 + i	$ z $ $ z_a $	0	°	$ z $ $ z_b $	°	°

8.6 Complex numbers and exponentiation (Section 15.6).

Find **all** complex numbers (in Cartesian form) equal to the following:

Mark the location of the complex number with a circle and mark its square roots with an X on the complex plane to the right.

8.7 The complex-plane locations of $8^{\frac{1}{3}}$, the cube root of 8 (Section 15.6).

Consider the complex number $z = a + bi = |z| e^{\theta i}$.

Write z^3 in Cartesian form in terms of a and b and in magnitude-phase form in terms of |z| and θ .

Result:

Determine a number z_1 that satisfies the equation $z_1 * z_1 * z_1 = 8$. Repeat to find two more unique numbers z_2 and z_3 .

Report your results in magnitude-phase form.

Result:

$$z_3 = e^{i}$$

Mark the locations of z_1 , z_2 , and z_3 with an **X** on the complex plane.

8.8 †Optional: Calculate the imaginary number i to the power i (provide result in Cartesian form).

Result: $i^i =$ + i^i

(provide all answers)