
6.7 ♣♣♣♣♣♣♣♣♣♣♣♣♣ Dynamic response of a building in an earthquake (Section 13.2).
The base of a building vibrates because of an earthquake.
The horizontal base motion is modeled as A sin(Ωt) where
A = 0.1 is the magnitude of the ground motion and Ω
is the earthquake’s frequency. The ODE governing the
horizontal displacement x of the building’s roof is

ẍ + 2.4 ẋ + 36x = 0.1Ω2 sin(Ωt)

k,b

Q
x

Base (building foundation)

N

Asin(Ωt)
nx

nx

k,b
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Circle the graph of x(t) that corresponds to Ω = 1 Hz = 2π rad/sec.
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Explain: The steady state response has magnitude
∣∣xss(t)

∣∣ = and a period of sec.
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6.8 Determining ζ and ωn from steady-state response. (Section 13.2).
Underdamped harmonically-forced vibrations for the system to the
right are governed by the following 2nd-order linear constant-coefficient ODE.

ÿ + 2 ζ ωn ẏ + ω2
n y = AΩ2 sin(Ω t)

Experimentally measured time-histories for A sin(Ω t) and y(t) are:
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(a) Write the steady-state response y(t)ss in terms of the constants B �
∣∣yss(t)

∣∣, φ � ∠∠∠∠∠∠∠∠∠∠∠∠∠(yss), etc.
Complete the following table with numerical values for A, B, Ω, φ, etc.
Result: yss(t) = sin( t + )

Description Value Units
Magnitude of function A sin(Ω t) A =
Magnitude of steady-state response

∣∣yss(t)
∣∣ B = meter

Period of steady-state response sec

Frequency of forcing function Ω = rad/sec

Frequency of steady-state response rad/sec

Phase of steady-state response with forcing function φ = radians

Consider the phase φ the steady state response yss(t) makes with the forcing function.
Negative phase means yss(t) lags/leads the forcing function, i.e., yss(t) is later/earlier .
Positive phase means yss(t) lags/leads the forcing function, i.e., yss(t) is later/earlier .
Negative phase shifts yss(t) left/right from the forcing function.
Positive phase shifts yss(t) left/right from the forcing function.

(b) Provide two algebraic equations that can be used to determine numerical values for ζ and ωn.
Next, classify those two equations by picking the relevant qualifiers from the following list.
Lastly, describe a process for solving the previous two equations.
Result:

= =

Uncoupled Linear Homogeneous Algebraic
Coupled Nonlinear Inhomogeneous Differential

Process:
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6.9 ††††††††††††† Dynamic response for an air-conditioner on a building. (Section 13.2).
An air conditioner is bolted to the roof of a one story build-
ing. The air conditioner’s motor is unbalanced and its ec-
centricity is modeled as a particle of mass m attached to
the distal end of a rigid rod of length r.

When the motor spins with angular speed Ω, it causes the
building’s roof of mass M to vibrate. The stiffness and
material damping in each column that supports the roof
is modeled as a linear horizontal spring (k) and linear hor-
izontal damper (b). The ODE governing the horizontal
displacement x(t) of the building’s roof is

k,b k,b

Ωt

m

x

mass = M

r

�F = m�a ⇒ (M + m) ẍ + 2 b ẋ + 2 k x = m r Ω2 sin(Ω t)

Alternate form for math: ẍ + 2 ζ ωn ẋ + ω2
n x = AΩ2 sin(Ω t)

(a) Comparing the two previous equations, express ωn, ζ, A in terms of M , m, b, k, r, t.
Result:

ωn = ζ = A =

(b) ††††††††††††† The building’s roof shakes too much. Comment on how M , m, b, k, r affect ζ, Ω
ωn

,
∣∣xss(t)

∣∣.
Complete only the blanks in the table (skip given answers) by writing − (decreases), 0 (no effect),
+ (increases), or ? (if it may decrease or increase). For the 2nd-to-last column, assume the air
conditioner’s normal operating speed is Ω = 25 rad

sec whereas for the last column, use Ω = 35 rad
sec .

Guess with intuition and verify with mathematics in Section 13.2.
Note: For unmodified building ωn = 30 rad

sec
Ω ≈ 25 rad

sec
Ω ≈ 35 rad

sec

ζ
Ω
ωn

∣∣xss(t)
∣∣ ∣∣xss(t)

∣∣
Balancing the motor (r→0) 0 0 −
Increasing the motor speed Ω (slightly)

Decreasing the motor speed Ω (slightly)

Adding mass to the roof (increasing M) +? −
Removing mass from the roof (decreasing M) −? ?
Stiffening the support columns (increasing k)

Adding damping to the columns (increasing b)

You do not have
to verify the +?
(mostly increase,

but complicated)

or −? (mostly

decrease, but com-

plicated) answers.

(c) List two ways to change the motor and minimize the roof shaking.
Result: 1. . 2.

(d) For certain values of M , m, b, k, and r, this ODE simplifies to

ẍ + 3 ẋ + 900 x = 1x 10−4 Ω2 sin(Ωt)

Calculate numerical values for ωn and ζ. Fill in numerical values for the xss(t) expressions.

Result:

ωn = rad
sec

ζ =

Ω ( rad
sec ) Steady-state part of x(t)

20 xss(t) = 7.94 x 10−5 ∗ sin( t + −6.843◦)

30 xss(t) = ∗ sin( t + ◦)

40 xss(t) = ∗ sin( t + ◦)
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6.10 ♣♣♣♣♣♣♣♣♣♣♣♣♣ ††††††††††††† Dynamic response of a particle in a horizontal spinning slot.
The figure to the right shows the top-view of a rigid body B consisting
of a straight track welded to a circular disk that has a simple angular
velocity on Earth (reference frame N). B’s mass center Bcm is coincident
with No, a point fixed in N . A particle Q slides with linear viscous
damping along the track. A linear-spring connects Q to Bcm.

Quantity Symbol Type
Mass of Q m Constant
Linear viscous damping constant b Constant
Linear spring constant (translation) k Constant
Natural length of spring Ln Constant
Stretch of spring x Variable
b̂z measure of B’s angular velocity in N Ω Constant

B

bx
by

bz

N

No

Ln
x

Ω

Top view

Using �F = m�a, the ODE governing x(t) is:
Alternate form for math:

ẍ + b
m ẋ + ( k

m − Ω2)x = Ω2 Ln

ẍ + 2 ζ ωn ẋ + ω2
n x = f(t)

Knowing b is smaller than m and k, Make a rough sketch of x(t) for each case shown below. Use
initial values of x(0) = 0 and ẋ(0) = 0. Explain each sketch in physics terms (force, mass, acceleration,

initial condition) and mathematical terms (e.g., solution to ODE, ζ, ωn, settling, stability, initial values, etc.).
Note: Determine the analytical solution x(t) for the Medium Spin case.

Slow spin: k
m

> Ω2

Sp
ri

ng
 s

tr
et

ch
 (

x)

time (t)

Physics explanation when x is positive:
The spring force can pull Q inward less/more (circle one) than
centrifugal force can push Q outward from the disk’s center.

Math explanation:

Solution is stable since ω2
n = (

k

m
− Ω2) is negative/zero/positive .

Solution for x(t) settles to the positive number x = .

If b < m, b < k, and k
m

� Ω2, x(t) is -damped since < ζ < .

Medium spin: k
m

= Ω2
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x)

time (t)

Physics explanation when x is positive:
The difference between the centrifugal force pushing Q outward and
the spring force pulling Q inward is a force equal to .
After Q’s speed increases enough, this centrifugal/spring force difference
is matched by an inward force equal to .

Math explanation:
Damping affects the particle’s steady-state speed. True/False .
Natural frequency ωn is negative/zero/positive/imaginary .

Solution for ẋ(t) settles to the positive number ẋ = .

x(t) = t +
m2 Ω2 Ln

b2

(
e − 1

)

Fast spin: k
m

< Ω2
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Physics explanation when x is positive:
Centrifugal force pushes Q outward less/more than the spring force
pulls Q inward, and the force difference decreases/increases with x.

Math explanation:
Damping affects the solution’s exponential growth rate. True/False .
Natural frequency ωn is negative/zero/positive/imaginary .
Solution for x(t) is unstable and grows exponentially. True/False .
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6.11 ♣♣♣♣♣♣♣♣♣♣♣♣♣ Dynamic response for various Ω for particle in horizontal spinning slot.

The following figure shows the top-view of a rigid body B consisting of a straight track welded to
a horizontal circular disk that has a simple angular velocity on Earth (reference frame N). A particle
Q slides along the greased track. A linear-spring connects Q to a point No that is fixed in N and
coincident with B’s center.

Quantity Symbol Type
Mass of Q m Constant
Viscous damping constant b Constant
Linear spring constant k Constant
Natural length of spring Ln Constant
Stretch of spring x Variable
Measure of B’s angular velocity in N Ω(t) Specified

ODE for x(t):
Alternate form:

m ẍ + b ẋ + (k − m Ω2)x = m Ω2 Ln

ẍ + 2 ζ ωn ẋ + ω2
n x = f(t)

B

bx
by

bz

N

No

Ln
x

Ω

Top view

Q’s motion depends on whether Ω is a small constant, large constant, or harmonically forced at
resonance. Label each graph with one of A, B, C, D, E, or F as described below.

A. Strong spring k > m Ω2 with slow constant spin Ω (small centrifuge)

B. Medium spring k = m Ω2 with medium constant spin Ω (medium centrifuge)

C. Weak spring k < m Ω2 with fast constant spin Ω (large centrifuge)

D. Strong spring k > m Ω2 harmonic forcing near resonance∗ Ω = cos( 1
2

√
k
m

t)

E. Very strong spring k � m Ω2 harmonic forcing near resonance∗ Ω = cos( 1
2

√
k
m

t)

F. Strong spring k > m Ω2 harmonic forcing above resonance∗ Ω = cos(2
√

k
m

t)

∗Note: With harmonic forcing Ω = cos(
�

k
m

t), Ω2 ≤ 1 since the cosine function returns values between −1 and 1.
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6.12 ♣♣♣♣♣♣♣♣♣♣♣♣♣ Power/energy-rate principle concepts. (Chapter 9).

A force of 20 Newtons is to be briefly applied to a child on a swing (modeled as a particle on a 2 m rope).
Determine the optimal time to push the child to change the swinging child’s kinetic energy.
The duration of this force is short compared to the swing’s period of oscillation (τperiod ≈ 2 π√

g/L
≈ 2 π√

9.8/2
≈ 2.8 sec).

To best increase kinetic energy, push the child forward when (circle the best answer)

• The child just starts moving forward at the top of the swing
• The child is moving quickly forward at the bottom of the swing
• The child is moving quickly backward at the bottom of the swing
• The child just stops moving backward at the top of the swing
• Other (explain):

To best decrease kinetic energy, push the child forward when (circle the best answer)

• The child just starts moving forward at the top of the swing
• The child is moving quickly forward at the bottom of the swing
• The child is moving quickly backward at the bottom of the swing
• The child just stops moving backward at the top of the swing
• Other (explain):

Reason: Putting in the direction of increases energy most efficiently.

6.13 ♣♣♣♣♣♣♣♣♣♣♣♣♣ Power/energy-rate principle: Minimum fuel-use orbit transfer. (Chapter 9).
To thrust a satellite from low circular orbit about Earth to a
higher circular orbit, an impulse is provided at two instants.

The first impulse can be directed radially outward, tangent
to the satellite’s circular orbit, or directed at some angle θ1

from the satellite’s orbital tangent. The first impulse puts
the satellite into an elliptical orbit.

The second impulse is applied at apogee (when the satellite is

furthest from Earth) and is directed at an angle θ2 from the
orbital tangent. The second impulse changes the orbit from
elliptical to circular.

Using engineering insights, provide values for θ1 and θ2 that
minimize the fuel required for this orbit transfer, a reason for
choosing these values, and roughly sketch the trajectory.
Result:

θ1 = ◦
θ2 = ◦

∆v1∆v2 RA

RB

θ2

θ1

Reason: Putting in the direction of increases energy most efficiently.
Note: In 1925, Walter Hohmann described a minimum-fuel orbital maneuver (Hohmann transfer orbit) that uses

two engine impulses to move a spacecraft between two coplanar circular orbits.
Note: See the related, similar question in Chapter 9.
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