Show work – except for \clubsuit fill-in-blanks (print .pdf from www.MotionGenesis.com \Rightarrow Textbooks \Rightarrow Resources).

12.1 ♣ Matrix rows and columns

Given:
$$M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 Row 1 of M = $\begin{bmatrix} \blacksquare \\ \blacksquare \end{bmatrix}$ Row 2 of M = $\begin{bmatrix} \blacksquare \\ \blacksquare \end{bmatrix}$ Column 1 of M = $\begin{bmatrix} \blacksquare \\ \blacksquare \end{bmatrix}$

12.2 A Matrix transpose

Transpose
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} \Box & \Box \\ \Box & \Box \end{bmatrix}$$
 Transpose $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} =$

12.3 \clubsuit Matrix addition and subtraction (+, -)

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} \blacksquare & \blacksquare \\ \blacksquare & \blacksquare \end{bmatrix} \qquad \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} - \begin{bmatrix} 2 & 4 & 6 \\ 3 & 5 & 7 \end{bmatrix} = \begin{bmatrix} \blacksquare & \blacksquare & \blacksquare \\ \end{bmatrix}$$

12.4 ♣ Scalar-matrix multiplication (*)

$$5*\begin{bmatrix}1 & 2\\3 & 4\end{bmatrix} = \begin{bmatrix} \ \ \ \ \ \ \end{bmatrix}$$

$$5*\begin{bmatrix}a & b & c\\d & e & f\end{bmatrix} = \begin{bmatrix} \ \ \ \ \ \ \end{bmatrix}$$

12.5 ♣ Matrix-matrix multiplication (*)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} * \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} * \begin{bmatrix} a & b & c \\ c & d \end{bmatrix} * \begin{bmatrix} 3 & x \\ 5 & y \end{bmatrix} = \begin{bmatrix} & & \\ & & & \\ & & & \end{bmatrix}$$

$$\begin{bmatrix} a \\ b \end{bmatrix} * \begin{bmatrix} x & y \end{bmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix} * \begin{bmatrix} x & 3 \\ y & 5 \\ z & 7 \end{bmatrix} = \begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}$$

12.6 A Matrix determinants

Calculate the following determinant three ways: expand along the 1^{st} row, 1^{st} column, 2^{nd} row.

271

$$\det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 0 & 9 \end{bmatrix} = +1 \det\begin{bmatrix} 5 & 6 \\ 0 & 9 \end{bmatrix} + -2 \det\begin{bmatrix} 4 & 6 \\ 7 & 9 \end{bmatrix} + +3 \det\begin{bmatrix} \boxed{ } & \boxed{ } \end{bmatrix} = \boxed{ }$$

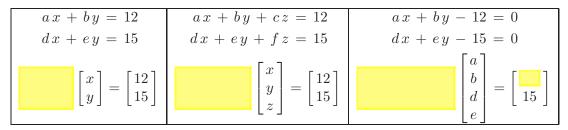
$$= +1 \det\begin{bmatrix} 5 & 6 \\ 0 & 9 \end{bmatrix} + -4 \det\begin{bmatrix} \boxed{ } & \boxed{ } \end{bmatrix} + +7 \det\begin{bmatrix} \boxed{ } & \boxed{ } \end{bmatrix} = \boxed{ }$$

$$= -4 \det\begin{bmatrix} \boxed{ } & \boxed{ } \end{bmatrix} + +5 \det\begin{bmatrix} \boxed{ } & \boxed{ } \end{bmatrix} + -6 \det\begin{bmatrix} \boxed{ } & \boxed{ } \end{bmatrix} = \boxed{ }$$

Calculate the determinant by expanding along the 3^{rd} column.

12.7 ♣ Matrix form of scalar equations (matrix multiplication in reverse)

Put the following sets of scalar equations into matrix form.



12.8 Optional: Solving sets of linear algebraic equations.

$$ax + by = 1$$
 $2x + 3y + 4z = 2$ $2x + 4y + 6z = 4$

Solve for
$$x, y$$
.
$$x = \frac{e - 2b}{ae - bd} \quad y = \frac{2a - d}{ae - bd} \qquad x = \frac{-1 - 2b + 2c}{2b - a - c} \quad y = \frac{2 + 2a - 2c}{2b - a - c} \quad z = \frac{-1 - 2a + 2b}{2b - a - c}$$

12.9 Concepts: Eigenvalues and eigenvectors

Do all the questions in Section 22.2.

12.10 ♣ Eigenvalues, determinants, and matrix algebra

- One test that the inverse of the $n \times n$ matrix A does **not** exist is
- The eigenvalues of the matrix A can be determined by setting $\det() = 0$
- If an eigenvalue of the matrix A is zero, A^{-1} does **not** exist.

True/False.

ax + by + cz = 1

12.11 ♣ Concepts: Eigenvalues and eigenvectors

Consider the following set of algebraic equations governing the unknowns u_1 , u_2 , and λ .

$$\lambda u_1 - u_2 = 0$$

$$25 u_1 + (\lambda - 6) u_2 = 0$$
 or equivalently
$$\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Find "special values" of λ (called *eigenvalues*) that allow for $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

Result:

$$\lambda_1 =$$
 $\lambda_2 =$

For each special value of λ determine a corresponding "special ratio" of u_2 to u_1 .

Result: (These "special ratios" are called *eigenvectors* and c_1 and c_2 are arbitrary constants.)

For
$$\lambda_1$$
: $U_1 \triangleq \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ For λ_2 : $U_2 \triangleq \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = c_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$