100110011100100011001110001110000011001001001110001110000011
100110011100100011001110001110000011001000100011001110000110
01000101100011010011001111000101100110101101001101101 000110
101100111100101010011100110011000101101100011011101101100011
C hapt er 2 8 01110000011001000010110011010111100110011001001110110 000110
110010001100111000111111001010100110110100011001001100111011

011001110010001101110000011001000010101000011001110110001101
000001100100001101100011011010010110100100011000011100100101
00000110010000011010011000100011011110011110110001101 1010010
11000110100110011110001001100110001011000011001010110010 1010
o 10010101101110001410011000010111000101011001100011100 1010101

O I [l puter tec nlques 01101011001110001001100011100101010001111010011001100101010
10010001100110001410001001011000100101110011000101010 110100

01101010101100011001010101110010110101010110110001101 1010011

Available in .pdf format at www.MotionGenesis.com = Textbooks =- Resources

28.1 Declaration of scalars (constant, variable, specified) in MotionGenesis

Declaration Description

Constant a Declares a as a constant

Constant b, c, Fred Declares b, ¢, and Fred as constants.

Variable x Declares x as a variable (unknown)

Variable y’ Declares y and y’ (i.e., y) as variables (unknowns)

Variable z’’ Declares z, z’, and z’’ as variables (unknowns)

Variable z’’ = 2*pi*t + z Declares z, z’, and z’°’ as variables and assigns 2 =272z + 2
Specified s Declares s as specified (known or prescribed)

Specified motorSpeed’ Declares motorSpeed and motorSpeed’ as specified (known or prescribed)
Specified h’’’ Declares h, h’, h’’, and h’’’ as specified (known or prescribed)
Specified h’ = sin(2#pi*t*h) Declares h and h’ (i.e., h) as specified and assigns h’ = sin(27th)
SetImaginaryNumber (i) Declares i as the imaginary number, ie., i = /-1

By default, MotionGenesis defines t as the independent variable, Pi as 3.141592..., and imaginary as V-1

28.2 Converting units with MotionGenesis

Note: MotionGenesis output results are marked with ->

(1) f==—=——mmm

(2) %Example 1: ConvertUnits

(3) ==

(4) InchesToCentimeter = ConvertUnits(inch, cm)
-> (5) InchesToCentimeter = 2.54

(6) OunceMassToMilligram = ConvertUnits(ozm, mg)
-> (7) OunceMassToMilligram = 28349.52

(8) PoundForceToNewton = ConvertUnits(1bf, Newton)
-> (9) PoundForceToNewton = 4.448222

(10) Convert60MPHToMetersPerSecond = 60 * ConvertUnits(MPH, m/sec)

-> (11) Convert60MPHToMetersPerSecond = 26.8224
(12) fpmmmmmm
(13) YExample 2: ConvertUnits
(14) pmmmmmmm

(15) Convert60MPHToMetersPerSecond := ConvertUnits((30+30) MPH, m/sec)
-> (16) Convert60MPHToMetersPerSecond = 26.8224

(17) ConvertTMinutesToSeconds = ConvertUnits(t minutes, seconds)
-> (18) ConvertTMinutesToSeconds 60*t

309

28.3 Symbolic differentiation with MotionGenesis

Symbolic manipulators are useful for calculating partial derivatives and ordinary time-derivatives.
Note: MotionGenesis output results are marked with ->

(1) Variable x, y

(2) z = y*cos(x) + 2*x"2*sin(y)
-> (3) z = yxcos(x) + 2*x"2xsin(y)

(4) partialDerivativeOfZwithRespectToY = D(z, y)
-> (5) partialDerivativeOfZwithRespectToY = cos(x) + 2*x"2xcos(y)

(6) partialDerivativeOfZWithRespectToX = D(z, x)
-> (7) partialDerivativeOfZWithRespectToX = 4*x*sin(y) - y*sin(x)

(8) Variable s’ % Declares s as a variable and s’ as it’s ordinary time-derivative
(9) funct = log(s) + s*exp(s)
-> (10) funct = log(s) + sxexp(s)

Dt(funct)
(1/s+exp(s)+s*exp(s))*s’

(11) ordinaryTimeDerivativeOfFunct
-> (12) ordinaryTimeDerivativeOfFunct

Copyright © 1992-2014 by Paul Mitiguy 310 Chapter 28: Computer techniques

28.4 Solutions of linear algebraic equations

It is relatively easy to solve a single, uncoupled, linear algebraic equation, e.g., solving for x in
3z + 9sin(t) — 12 = 0 or [(3][2] = [9sin(®t) + 12]
Solving two coupled linear algebraic equations for y and z is a little more difficult, e.g.,

3y + 2z + 9sin(t) — 12 = 0 [3 2}[3;}_{-93110(75)—1—12

or
2y + 4z + 5cos(t) — 11 =0 2 4 z -5 cos(t) + 11

Solving four coupled linear algebraic equations for z1, x2, x3, x4 is more difficult, e.g.,

3x1 + 2x2 + 223 + 3x4 = 9 sin(t) 3223 T 9 sin(t)

2117 + 4x9 + 223 + 324 = 5 cos(t) or 2423 x2 _ 5 cos(t)
4 5 6 7 T3 11

dx1 + Sag + 63 + Ty = 11 0 8 7 6 . 5

921 + 8x9 + Taxg + 624 = 15

Solutions of previous linear algebraic equations with MotionGenesis (symbolic)

Variable x
Equation = 3*x + 9*sin(t) - 12
Solve(Equation, x)

Variable y, z

Zero[1] = 3%y + 2%z + 9xsin(t) - 12
Zero[2] = 2xy + 4%z + bxcos(t) - 11
Solve(Zero, y, z)

Variable =x{1:4}

Eqn[1] = 3*xl1 + 2%x2 + 2%x3 + 3*x4 - 9*sin(t)
Eqn[2] = 2xx1 + 4%x2 + 2*x3 + 3%x4 - b*cos(t)
Eqn[3] = 4*x1 + 5*x2 + 6%x3 + 7*x4 - 11
Eqn[4] = 9*x1 + 8%x2 + 7*x3 + 6%x4 - 15

Solve(Eqn, x1, x2, x3, x4)

Save SolvelLinearEquations.all

Quit

Solutions of previous linear algebraic equations with MATLAB® (numeric)

After assigning t = 0.2, MATLAB® numerically solves the linear equations in Section 28.1 via:

Coef(1,1) = 3; Rhs(1,1) = -(9%sin(t) - 12);
SolutionToAxEqualsB = Coef \ Rhs;
x = SolutionToAxEqualsB(1)

Coef(1,1) = 3; Coef(1,2)
Coef(2,1) = 2; Coef(2,2)

2; Rhs(1,1)
4; Rhs(2,1)

-(9xsin(t) - 12);
-(5*cos(t) - 11);

~ 0
o
=3
1]

SolutionToAxEqualsB = Coef

y = SolutionToAxEqualsB(1)

z = SolutionToAxEqualsB(2)

A

Coef(1,1) = 3; Coef(1,2) = 2; Coef(1,3) = 2; Coef(1,4) = 3; Rhs(1,1) = 9*sin(t);
Coef(2,1) = 2; Coef(2,2) = 4; Coef(2,3) = 2; Coef(2,4) = 3; Rhs(2,1) = 5*cos(t);
Coef(3,1) = 4; Coef(3,2) = 5; Coef(3,3) = 6; Coef(3,4) =7; Rhs(3,1) = 11;
Coef(4,1) = 9; Coef(4,2) = 8; Coef(4,3) =7; Coef(4,4) = 6; Rhs(4,1) = 15;
SolutionToAxEqualsB = Coef \ Rhs;

x1 = SolutionToAxEqualsB(1)
x2 = SolutionToAxEqualsB(2)
x3 = SolutionToAxEqualsB(3)
x4 = SolutionToAxEqualsB(4)

Copyright © 1992-2014 by Paul Mitiguy LislE) 311 Chapter 28: Computer techniques

28.5 Solution of quadratic and polynomial equations (roots)

Polynomial equations are a special class of nonlinear algebraic equations. Although there are closed-form
solutions for linear, quadratic, cubic, and quartic polynomial equations, there are no general closed-form
solutions for 5** and higher-order polynomials.

Symbolic roots of quadratic equation az®> + bx + ¢ = 0 with MotionGenesis

1) fmmmmmm
(2) % Example 1: GetQuadraticRoots (roots of quadratic equation)
(3) ===
(4) Comstant a, b, c
(56) Variable x
(6) rootsA = GetQuadraticRoots(a*x"2 + b*x + c, x)
=> (7) rootsA[1] = -0.5%(b-sqrt(b~2-4*axc))/a
-> (8) rootsA[2] = -0.5x(b+sqrt(b~2-4*axc))/a

(9) positiveRootA = GetQuadraticPositiveRoot(a*x"2 + b*x + c, x)
-> (10) positiveRootA = -0.5%(b-sqrt(b~2-4*a*c))/a

(11) negativeRootA = GetQuadraticNegativeRoot(a*x"2 + b*x + c, x)
-> (12) negativeRootA = -0.5%(b+sqrt(b~2-4*axc))/a

(13) h====———————-
(14) % Example 2: GetQuadraticRoots (roots of quadratic equation)
(18) J———mm—mm e m oo
(16) rootsB = GetQuadraticRoots([a; b; c])

=> (17) rootsB[1] = -0.5%(b-sqrt(b~2-4*ax*c))/a

-> (18) rootsB[2] = -0.5*%(b+sqrt(b~2-4*axc))/a

Roots of 5”-order polynomial p° + 2p* + 3p® + 5p*> + 9p + 17 = 0 with MotionGenesis

(1) fpmmmmmmm
(2) % Example 1: GetPolynomialRoots (roots of 5th-order polynomial)
(8) hpmmmmm oo
(4) SetImaginaryNumber(i)

(5) Variable p

(6) rootsA = GetPolynomialRoots(p~5 + 2%p~4 + 3*p~3 + b*p~2 + 9%p + 17, p, 5)

=> (7) rootsA = [-1.857621; -0.9475112 - 1.507048%i; -0.9475112 + 1.507048%1i;
0.8763218 - 1.455989%i; 0.8763218 + 1.455989%i]

(8) hhm==mmmm
(9) % Example 2: GetPolynomialRoots (roots of 5th-order polynomial)

(11) rootsB = GetPolynomialRoots([1, 2, 3, 5, 9, 17])
-> (12) rootsB [-1.857621, -0.9475112 - 1.507048%i, -0.9475112 + 1.507048%1,
0.8763218 - 1.455989*i, 0.8763218 + 1.455989%i]

Roots of 5""-order polynomial p° + 2p* + 3p* + 5p*> + 9p + 17 = 0 with MATLAB®

>> polynomial = [1, 2, 3, 5, 9, 17];
>> p = roots(polynomial)

p=
0.8763 + 1.45601
0.8763 - 1.45601
-1.8576

-0.9475 + 1.50701
-0.9475 - 1.50701

Copyright © 1992-2014 by Paul Mitiguy 312 Chapter 28: Computer techniques

28.6 Solutions of nonlinear algebraic equations

One way to find the solution to a nonlinear algebraic equation T
is to graph the function and identity the values of x that make the
function equal to 0. For example, the graph of the function to the
right is nonlinear (i.e., it is not a line) and has two solutions,
namely z ~ 0.7391 and z =~ -0.7391.

Another way to solve a nonlinear equation is to use a computer
program. Most algorithms start with a guess and iterate towards
a solution (frequently a solution close to the guess). For example, the . N /

1
following MotionGenesis commands produce the solution x=0.7391. 080604502 8 02 04 00 08 1

05

X2 cos(x)2
o
'
S

-0.5

Variable x
Solve(x"2 - cos(x)"2, x=2) % x=2 is a guess to a solution
Quit

28.6.1 Solutions of coupled nonlinear algebraic equations with MotionGenesis

The coupled set of algebraic equations to the right is nonlinear? in 4y =1

x and y (a circle and sine curve are not lines). These two curves inter- y = sin(z)
sect at two locations (there are two solutions to these equations), namely t T
r=0.7391, y=0.6736 and 2= -0.7391, y = 0.6736. In gemeral itis |/ ¢
difficult to determine the number of solutions to nonlinear alge- '
braic equations, and the solution process usually requires a numerical 0
algorithm that starts with a guess and iterates towards a solution.

-05

“Although nonlinear equations with one or two unknowns can be solved by)< /
trial and error or graphing, generally, Newton-Rhapson techniques are used 1 ___
to solve sets of nonlinear equations. -15 -1 -05 0 05 1 15

For example, the following MotionGenesis commands produce the solution x = -0.7391, y = -0.6736.

Variable x, y

Zero[1] = x"2 + y°2 - 1 % x"2 + y"2 =1 (unit circle)
Zero[2] =y - sin(x) % y = sin(x) (sine wave)

Solve(Zero, x = 1.5, y =0) % x=1.5, y=0 is a guess to a solution
Quit

28.6.2 Solutions of coupled nonlinear algebraic equations with MATLAB®

Use a text editor to create the file NonlinearSolveCircleSine.m (as shown below).

Invoke MATLAB® and ensure NonlinearSolveCircleSine.m is in the current working directory.
Type NonlinearSolveCircleSine at the MATLAB® prompt.

Note: The MATLAB® nonlinear solver £fsolve requires the optimization toolbox.

A File: NonlinearSolveCircleSine.m
% Purpose: Solving a set of nonlinear equations with Matlab
% Note: Requires Matlab’s optimization toolbox

s —
function solutionToNonlinearEquations = NonlinearSolveCircleSine

initialGuess = [2, 0];

solveOptions = optimset(’fsolve’);

solutionToNonlinearEquations = fsolve(@CalculateFunctionEvaluatedAtX, initialGuess, solveOptions);

A
function fx = CalculateFunctionEvaluatedAtX(X)

x = X(1); y = X(2);
fx(1) = x"2 + y°2 - 1; % x"2 +y2=1 (unit circle)
fx(2) =y - sin(x); % y = sin(x) (sine wave)

Copyright © 1992-2014 by Paul Mitiguy 313 Chapter 28: Computer techniques

28.7 Solution of ordinary differential equations (ODEs)

Computers languages such as C and Fortran and software such as MotionGenesis and MATLAB® have
revolutionized the numerical solution of ODEs. Frequently, compiled C and Fortran codes optimize
code for a specific operating system, microprocessor, and cache and are much faster than interpreted
codes. This difference is significant for embedded systems that require real-time operation or when compiled
code requires more than a minute to execute (which means the interpreted code may require many hours).

28.7.1 Solution of 1*-order ODE (numerical integration)

The figure to the right shows a parachutist in vertical free-fall.
When air-resistance and other forces than gravity are neglected, the
parachutist’s downward speed v is governed by the 15-order ODE

dv

— = 98
dt

Although this ODE is easily solvable by separation of wvariables
and integration as v(t) = v(0) + 9.8¢, it can also be solved by com-

puter numerical integration as shown in the following MotionGenesis file. 100 %
920

% File: ParachutistFreeFallSpeed.txt o d

h=mmm ot)

Variable v’ = 9.8 »

Input v=0 % Initial value 0

ODE() ParachutistFreeFallSpeed 2

Quit 10
0

0 2 4 6 8 10

Note: To generate MATLAB®, C, or Fortran code to solve the ODE, append the suffix .m, .c, or .for, to the filename.
For example, to generate MATLAB® code, replace the last line with ODE() ParachutistFreeFallSpeed.m

28.7.2 Solution of 2"-order ODEs (numerical integration)

The figure to the right shows a 1 m pendulum swinging on Earth’s surface.
The pendulum’s motion is governed by the nonlinear 2"-order ODE

§ = -9.8sin(f) .0

The MotionGenesis solution to this nonlinear ODE is shown below.

% File: ClassicParticlePendulumShort.al

Variable theta’’ = -9.8*sin(theta)
Input theta=30 deg, theta’=0, tFinal=5, integStp=0.02

NI U

Pendulum angle (degrees)
o
—
———
—
~—~——
—

Output t sec, theta deg
ODE() ClassicParticlePendulum I \ / \ / \
Quit -30
0 1 2 3 4 5
Time (seconds)

Note: To generate MATLAB®, C, or Fortran code to solve the ODE, append the suffix .m, .c, or .for, to the filename.
For example, to generate MATLAB® code, replace the last line with 0DE() ClassicParticlePendulum.m

Copyright © 1992-2014 by Paul Mitiguy 314 Chapter 28: Computer techniques

28.7.3 Solution of coupled nonlinear 2"*-order ODESs

The motion of the system to the right is governed by ODEs that can exhibit
“chaotic” behavior (small changes in initial values, physical parameters, or
numerical integration accuracy lead to dramatically different behavior).

2 [508.89 sin(ga) — sin(gp) cos(qp) 4a ¢B]
-21.556 + sin?(¢p)

ip = -sin(gp) cos(qp) ¢4

Ga =

The following MotionGenesis commands solve these ODEs.

Variable gA’’, gB’’ % Angles and their first and second time-derivatives .
b Wnes
qA’’ = 2%(508.89%sin(qA) - sin(gB)*cos(gB)*qA’*qB’) / (-21.556 + sin(gB)"2) 1000 : Nv//
gB’’ = -sin(gB)*cos(gB)*qA’"2 0
% g
Input tFinal=10 sec, integStp=0.02 sec, absError=1.0E-07, relError=1.0E-07 g o ‘f<\\\\
Input qA=90 deg, gB=1.0 deg, qA’=0.0 rad/sec, qgB’=0.0 rad/sec ? o0
OutputPlot t sec, gA degrees, gB degrees) N ~
the—ee o N
ODE() solveBabybootODE 1500

. 0 2 4 6 8 10
Quit Time (seconds)

Note: To generate MATLAB®, C, or Fortran code to solve the ODE, append the suffix .m, .c, or .for, to the filename.
For example, to generate MATLAB® code, replace the last line with 0DE() solveBabybootODE.m

Solution of ordinary differential equations with MATLAB®

The MATLAB® solution for the ODEs in Section 28.7.3 has two functions. The first function is the main
routine that drives the numerical integrator. The second function contains the differential equations in
first-order form. To use MATLAB®:

e Use a text editor to create the file BabybootODE.m
e Invoke MATLAB® and ensure BabybootODE.m is in the current working directory
e Type BabybootODE at the MATLAB® prompt

/A—
% File: BabybootODE.m (solving differential equations with MATLAB)
yA
function BabybootODE

degreesToRadians = pi/180;

initialState = [90*degreesToRadians 1.0xdegreesToRadians O 0];

timeInterval = linspace(0, 10, 1000);

odeOptions = odeset(’RelTol’, 1.0e-7, ’Abstol’, 1.0E-8);

[time,stateMatrix] = ode45(Qodefunction, timelInterval, initialState, odeOptions);
gB = stateMatrix(:,2);

plot(time, gB/degreesToRadians, ’r-’)

xlabel(’ Time (seconds) ’);

ylabel(’ Plate angle (degrees) ’);

function timeDerivativeOfState = odefunction(t, state)

gA = state(1); % Pendulum angle

gB = state(2); % Plate angle

gAp = state(3); % qA’, time derivative of the pendulum angle
gBp = state(4); % gB’, time derivative of the plate angle

qup = 2*(508.89*Sin(qA) - Sin(qB)*Cos(qB)*qu*qu) / (‘21.556 + sin(qB)‘2);
gBpp = -sin(gB)*cos(qB)*qAp~2;
timeDerivativeOfState = [qAp; 9Bp; gApp; gBpp];

Copyright © 1992-2014 by Paul Mitiguy 315 Chapter 28: Computer techniques

28.7.4 Solution of coupled ODEs with additional output (spinning rigid body)

The ODEs governing 3D rotational motions of a torque-free rigid body B are:

: (I, —L.)
Quantity Symbol | Value Wy = % W Wy
B’s central moment of inertia for b, L. 1 kgm? T
B’s central moment of inertia for by, L, 2 kgm?) (I1,-1,,)

B’s central moment of inertia for b, I, 3 kgm? Wy = [YrWs
N N— B . vy

b, measure of "w W Variable

b, measure of "&” Wy Variable — (I, — Iyy)

b, measure of "@” W, Variable Wz = I, Wy We

A MotionGenesis solution! to these ODEs for 0 < ¢ < 4 with initial values of w, = 7, wy = 0.2, w, = 0.2
is provided below. The output from this program includes time, kinetic energy, and various measures of

, and K.

. A |
angular momentum, i.e., t, wy, wy, W, Hy, Hy, H,, Hpqg = ‘H

% File: SpinningBookODE.al (solve coupled odes)
A - - -
Ixx = 1; Iyy = 2; Izz = 3;

Variable wx’, wy’, wz’

wx’ = ((Iyy - Izz)*wz*xwy) / Ixx

wy’ = ((Izz - Ixx)*wx*xwz) / Iyy

wz’ = ((Ixx - Iyy)*uyxwx) / Izz

%-- Angular momentum and rotational kinetic energy --
Hx = Ixx*wx; Hy = Iyy*wy; Hz = Izz*wz

Hmag = sqrt(Hx"2 + Hy"2 + Hz"2)

K = 1/2*%(Ixx*wx"2 + Iyy*wy 2 + Izz*wz"2)

A - - -
Input wx=7.0, wy=0.2, wz=0.2, tFinal=4

OQutput t, wx, wy, wz, Hx, Hy, Hz, Hmag, K
ODE() SpinningBook

Save SpinningBookODE.all

Quit

'To produce a MATLAB® file to solve these ODEs, change the ODE command to ODE() SpinningBook.m

Copyright © 1992-2014 by Paul Mitiguy 316 Chapter 28: Computer techniques

28.8 Matrix calculations with MotionGenesis

Matrices in MotionGenesis

RowMatrix =[1, 2, 3]
ColumnMatrix = [1; 2; 3]
MatrixWithTwoRowsAndThreeColumns =
MatrixWithThreeRowsAndTwoColumns

[B |

Matrix addition
A = [1,2,3; 4,5, 6]
B = [7,8,9; pi, i, t]
AddMatrices = A + B

NN

Multiplication of a matrix with a scalar

ScalarMultiplicationExample = 7 * [1, 2, 3;

Multiplication of two matrices

A = [11, 12, 13; 21, 22, 23]
B = [11, 12; 21, 22; 31, 32 1]
C = AxB

w w
NN
o o

o o
e .

The zero matrix and identity matrix in Motion(Genesis

—_

4, 5, 6]

A = GetZeroMatrix(3) % 3x3 matrix of zeros
B = GetZeroMatrix(2, 3) % 2x3 matrix of zeros
C = GetIdentityMatrix(3) % 3x3 identity matrix
D = GetIdentityMatrix(2, 3) % 2x3 matrix with 1 along the diagonal and O elsewhere

Partial and ordinary derivative of a matrix with MotionGenesis

Variables x, y, z
A = [x72; x*sin(y); exp(x)*cosh(y)]

PartialDerivativeOfAWithRespectToX = D(A, x)
PartialDerivativeOfAWithRespectToXandY = D(A, [x,y])

Transpose of a matrix with MotionGenesis

A = [1,2,3; 4,5, 6]
B = GetTranspose(A)

Submatrices with MotionGenesis

A=1[1, 2, 3,4, 5,6, 7, 8; 9, 10, 11, 12]
B = GetRows(A, 2) % 1x4 matrix with row 2 of A
C = GetRows(A, 3,1) % 2x4 matrix with row 3 and row 1 of A
D = GetRows(A, 1:3, 3:2) % 5x4 matrix with rows 1 to 3 and rows 3 to 2 of A
F = GetColumn(A, 2) % 3x1 matrix with column 2 of A
G = GetColumns(A, 2:4) % 3x3 matrix with columns 2 to 4 of A
H = GetColumns(GetRows(A,2:3), 2) % 1x2 matrix with elements 2,2 and 3,2 of A
Copyright © 1992-2014 by Paul Mitiguy 317 Chapter 28: Computer techniques

Determinant and inverse of a matrix with MotionGenesis

A = [1,2,3; 4,5,6; 7,8, 9]
Determinant0OfA = GetDeterminant(A)
Inverse0OfA = GetInverse(A)

Solving linear algebraic equations with MotionGenesis (symbolic or numerical)

Variable x1, x2, x3
Constant bl, b2, b3

Zero[1] = 2%x1 + 3%x2 + 4*x3 - bl
Zero[2] = 3*x1 + 4*xx2 + 5%x3 - b2
Zero[3] = 6*xx1 + 7*x2 + 9%x3 - b3

Solve(Zero, x1, x2, x3)

Forming matrices from linear algebraic equations with MotionGenesis

Constant bl, b2, b3
Variable x1, x2, x3

Zero[1] = 2*x1 + 3*x2 + 4*x3 - bl

Zero[2] = 3#*x1 + 4*x2 + 5*x3 - b2

Zero[3] = 6*x1 + 7*x2 + 9%x3 - b3

CoefficientMatrix = D(Zero, [x1, x2, x3]) % Forms 3x3 matrix
RemainderMatrix = Exclude(Zero, [x1, x2, x3]) % Forms [-bl; -b2; -b3]

Eigenvalues and eigenvectors with MotionGenesis

A=1[1,2,3; 4,5,6; 7,38, 9]

eigenValuesOfA = GetEigen(A, eigenVectorsOfA)
eigenVectorl = GetColumn(eigenVectorsOfA, 1)
eigenVector3 = GetColumn(eigenVectorsOfA, 3)

28.9 Matrix calculations with MATLAB®

Matrices in MATLAB®

RowMatrix =[1,2, 3]
ColumnMatrix = [1; 2; 3 1]
MatrixWithTwoRowsAndThreeColumns =
MatrixWithThreeRowsAndTwoColumns

o
R

1]

mM M
=
NN
w w
IS
[$2e)]
L]

[
—_t

Matrix addition

A = [1,2,3; 4,5, 6]
B = [7,8,9; pi, i, t1]
AddMatrices = A + B

Multiplication of a matrix with a scalar
ScalarMultiplicationExample = 7 * [1, 2, 3; 4, 5, 6]

Multiplication of two matrices

A = [11, 12, 13; 21, 22, 23]
B = [11, 12; 21, 22; 31, 32 1]
C = AxB

Copyright © 1992-2014 by Paul Mitiguy 318

Chapter 28: Computer techniques

The zero matrix and identity matrix in MATLAB®

A = zeros(3); % 3x3 matrix of zeros
B = zeros(2, 3); % 2x3 matrix of zeros
F = eye(3); % 3x3 identity matrix
G = eye(2, 3); % 2x3 matrix with 1 along the diagonal and O elsewhere

Transpose of a matrix with MATLAB®

A = [1,2,3; 4,5,6]
B = A % The prime symbol denotes transpose

Submatrices with MATLAB®
3 5: 6: 7’ 8; 9, 10, 11, 12];

=
I
—
.
[\
w
S

B=A(C2, 1:4) % 1x4 matrix with row 2 of A

C=A(C1:3, 2) % 3x1 matrix with col 2 of A

D=AC1:3, 2:4) % 3x3 matrix with cols 2 to 4 of A
E=A(2:3, 2) % 1x2 matrix with elements 2,2 and 3,2 of A

Determinant and inverse of a matrix with MATLAB®

A = [1,2,3; 4,5, 6; 7,8, 9]
DeterminantOfA = det(A)
InverseOfA = inv(A)

Solving linear algebraic equations with MATLAB® (numerical)

B =[1; 2; 3]
A= [2, 3, 4;
5, 7, 9;
7, 3, 5]
X = A\B

Eigenvalues and eigenvectors with MATLAB®

A=10[1,2,3; 4,5,6; 7,38, 9]
[eigenVectorsOfA, eigenValuesOfA] = eig(A)
eigenVectorl = eigenVectorsOfA(1:3, 1)

Copyright © 1992-2014 by Paul Mitiguy 319 Chapter 28: Computer techniques

