
Lab 6 (associated with Hw 6): Dynamic response with harmonic forcing

The objective of this laboratory is to develop physical intuition into how a forcing function effects the
behavior of a physical system governed by a second-order, linear, ODE.

Lab 6.1 Effect of forcing function frequency (Ω) on the dynamic response of a pogo stick.
The power/energy-rate principal relates NPS (the power of a system S in a Newtonian reference
frame N) with the time-rate of change of NKS (the kinetic energy of S in N ) as

NPS =
d NKS

dt

The power associated with �F
P

(a force applied to a point P ) is denoted NP�F
P

and is defined in terms
of N�vP (the velocity of P in N) as

NP�F
P

� �F
P ·············N�vP

In view of these equations and the definition of the vector dot-product, one may see that �F
P

adds
power to a system (increases kinetic energy) when �F

P
is applied in the same direction as N�vP .

Alternately, �F
P

removes power from a system (decreases kinetic energy) when �F
P

is applied in the
direction opposite N�vP .

To begin, double-click on the file
HarmonicForcingPogoStick.wm2d. To
answer each question with Working Model,
click the button (if necessary) and click
and drag the slider that controls Ω/ωn (the
ratio of the forcing frequency to the system’s
natural frequency). To start the simulation,
click the button, and to stop it, click
the button.

(a) When the forcing frequency Ω is approximately equal to the system’s natural frequency ωn, i.e.,
Ω
ωn

≈ 1, the pogo stick jumps very high/high/low/none .

(b) When the forcing frequency Ω is much higher than the system’s natural frequency ωn, i.e.,
Ω
ωn

> 2, the pogo stick jumps very high/high/low/none .

(c) When the forcing frequency Ω is much lower than the system’s natural frequency ωn, i.e.,
Ω
ωn

< 0.5, the pogo stick jumps very high/high/low/none .

(d) Explain your observations based on the power/energy-rate principle.

(e) Optional: What happens when the center of mass position is moved?
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Lab 6.2 Harmonic forcing of a mass-spring-damper system
Homework 5.4 showed that when the Scotch-yoke mechanism moved P so that yP (t) = Ā sin(Ω t),
the equation of motion governing y(t) (when bs=0) was

ÿ +
b

m
ẏ +

k

m
y = ĀΩ2 sin(Ω t)

Quantity Symbol Type

Mass of Q m Constant
Linear spring constant of spring connecting P and Q k Constant
Natural length of spring connecting P and Q Ln Constant
Static equilibrium length of spring connecting P and Q Leq Constant
Earth’s gravitational acceleration g Constant
Linear damper constant of damper connecting P and Q b Constant
Linear damper constant associated with Q’s sliding in N bs Constant

Measure of Q’s equilibrium position from P y Variable
Measure of P ’s position from a line fixed in N yP Specified

Amplitude of harmonic forcing A Constant
Frequency of harmonic forcing Ω Constant

Leqk b

Ln

bs bs

N

P

Q

y

ny

= sin(Ωt)yP

No

mass m

yQ

(a) Complete the following sketches. Note: y(t) characterizes how Q moves relative to P and
yQ(t) � yP (t) + y(t) characterizes how Q moves relative to N .
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(b) The particle Q moves very little in N at low/high (circle one) frequency whereas at low/high
frequency, Q appears to be rigidly connected to P . The most energetic motion of Q in N occurs
when Ω ≈ .
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