Lab 6 (associated with Hw 6): Dynamic response with harmonic forcing

The objective of this laboratory is to develop physical intuition into how a forcing function effects the
behavior of a physical system governed by a second-order, linear, ODE.

Lab 6.1 Effect of forcing function frequency (2) on the dynamic response of a pogo stick.
The power/energy-rate principal relates ~ ps (the power of a system S in a Newtonian reference
frame N) with the time-rate of change of YK° (the kinetic energy of S in N ) as
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The power associated with ' (a force applied to a point P) is denoted NPF  and is defined in terms

of Y%7 (the velocity of P in N) as
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In view of these equations and the definition of the vector dot-product, one may see that F adds

oy
power to a system (increases kinetic energy) when F is applied in the same direction as NgP.
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Alternately, ' removes power from a system (decreases kinetic energy) when F is applied in the

direction opposite Vv T
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(a) When the forcing frequency € is approximately equal to the system’s natural frequency wy, i.e.,
% ~ 1, the pogo stick jumps very high/high/low/none.
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(b) When the forcing frequency  is much higher than the system’s natural frequency w,, i.e.,
% > 2, the pogo stick jumps very high/high/low/none.

(¢) When the forcing frequency Q is much lower than the system’s natural frequency wy,, i.e.,
% < 0.5, the pogo stick jumps very high/high/low/none.

(d) Explain your observations based on the power/energy-rate principle.

(e) Optional: What happens when the center of mass position is moved?
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Lab 6.2 Harmonic forcing of a mass-spring-damper system
Homework 5.4 showed that when the Scotch-yoke mechanism moved P so that yp(t) = A sin(Q1),
the equation of motion governing y(t¢) (when b;=0) was

b k _
j+ —y + —y = AQ*sin(Qt)
m m

Quantity Symbol| Type - i
Mass of @ m Constant @’ ypisin(m)
Linear spring constant of spring connecting P and @ k Constant

Natural length of spring connecting P and @ L, Constant

Static equilibrium length of spring connecting P and @Q Leq | Constant

Earth’s gravitational acceleration g Constant

Linear damper constant of damper connecting P and Q b Constant

Linear damper constant associated with @’s sliding in N bs Constant

Measure of @’s equilibrium position from P Y Variable

Measure of P’s position from a line fixed in N yp |Specified

Amplitude of harmonic forcing A Constant

Frequency of harmonic forcing Q Constant

(a) Complete the following sketches. Note: y(t) characterizes how () moves relative to P and
yo(t) £ yp(t) + y(t) characterizes how @ moves relative to N.

|yss(t)| vs. |sts(t)| vs. €

Magnitude of steady state response
Magnitude of steady state response

Forcing frequency Forcing frequency

(b) The particle @ moves very little in N at low /high (circle one) frequency whereas at low/high
frequency, () appears to be rigidly connected to P. The most energetic motion of () in N occurs
when Q =~
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