Lab 4 (associated with Hw 4): Period of vibration of a slinky

This laboratory develops physical intuition for 2^{nd} -order, linear, ODEs and associated quantities, including natural length, equilibrium length, period of vibration, natural frequency, decay ratio, and damping ratio.

Lab 4.1 Period of vibration of a massless slinky

To analytically estimate the period of vibration of a mass-spring system ("massless" slinky with attached massive object), gather the following data:

-	- ,	
Quantity	Symbol	Value
Mass of object attached to slinky	m_{object}	kg
Stretch when object is attached	stretch	m
Earth's gravitational acceleration	g	$9.8 \frac{\text{m}}{\text{s}^2}$

Assuming that $\zeta \approx 0$ (little damping) the period of vibration $\tau_{\rm period}$ can be estimated as follows:

$$k = \frac{m_{object} g}{stretch} = \frac{N}{m} \qquad \qquad \omega_n \underset{(5.3)}{=} \sqrt{\frac{k}{m_{object}}} = \frac{rad}{sec}$$

$$\tau_{period}_{analytical} \underset{(1)}{=} \frac{2\pi}{\omega_d} \underset{(5.7)}{\approx} \frac{2\pi}{\omega_n} = \frac{rad}{sec}$$

To experimentally determine τ_{period} , measure several periods of vibration and then average them, i.e.,

$$\tau_{\text{period}_{experimental}} = \frac{\text{sec}}{\text{cycles}} = \frac{\text{sec}}{\text{cycle}}$$

The error in the analytical estimate of $\tau_{\rm period}$ to the experimental one is

$$\% \text{Error} = 100 * \frac{\tau_{\text{period}}_{analytical} - \tau_{\text{period}}_{experimental}}{\tau_{\text{period}}_{experimental}} = 100 * \frac{\tau_{\text{period}}_{experimental}}{\tau_{\text{period}}_{experimental}} = 100 * \frac{\tau_{\text{period}}_{experimental}}{\tau_{\text{period}}_{experimental}}$$

Lab 4.2 A better model: Period of vibration of a massive slinky

The previous experiment showed how to experimentally determine the period of vibration (τ_{period}) of a massive objected suspended by a "massless" slinky. To account for modeling errors associated with the mass of the slinky, the period of vibration is recalculated with the following data:

Quantity	Symbol	Value
Mass of object attached to slinky	m_{object}	kg
Natural length of slinky (completely unstretched)	L_n	m
Equilibrium length of vertical slinky without attached object	L_{eqA}	m
Equilibrium length of vertical slinky with attached object	L_{eqB}	m
Earth's gravitational acceleration	g	$9.8 \frac{m}{s^2}$

By using the equations which govern the static equilibrium lengths of the slinky (with and without the attached object), one can estimate τ_{period} . The process consists of the following steps.

- Measure L_n , the slinky's **natural length** (the slinky's length when it is **completely** unstretched).
- This experiment models the slinky's mass as a particle of mass m_{spring} attached to the end of the slinky. This is the mass required to stretch the slinky to L_{eqA} . Carefully measure L_{eqA} .
- Attach an object of known mass to the slinky. Measure L_{eqB} (the new equilibrium length).
- **Show** how to use $\vec{\mathbf{F}} = m\vec{\mathbf{a}}$ to calculate k (the slinky's linear spring constant) and m_{spring} .

• Calculate the motion's **natural frequency** ω_n and $\tau_{\text{period}_{analytical}}$ (the mathematically determined **period of vibration**).

$$\omega_n = \sqrt{\frac{k}{m_{spring} + m_{object}}} = \frac{\text{rad}}{\text{sec}}$$

$$\omega_d \triangleq \omega_n \sqrt{1 - \zeta^2} \approx \omega_n \quad \text{(when } \zeta \text{ is small)}$$

$$\tau_{\text{period}} = \frac{2\pi}{(6.1)} \approx \frac{2\pi}{\omega_d} \approx \frac{1}{2} \text{sec}$$

• Measure $\tau_{\text{period}_{experimental}}$ (the experimentally determined **period of vibration**) by timing several periods of vibration and then averaging them.

$$\tau_{\text{period}_{experimental}} = \frac{\text{sec}}{\text{cycles}} = \frac{\text{sec}}{\text{cycles}}$$

• Calculate the percentage error in the analytical determination of $\tau_{\rm period}$.

Error =
$$100 \frac{\tau_{\text{period}_{experimental}} - \tau_{\text{period}_{analytical}}}{\tau_{\text{period}_{experimental}}} =$$
 %

• Using the same data, calculate the percentage error in the analytical determination of τ_{period} when m_{spring} is assumed to be zero.

$$\text{Error} = 100 \frac{\tau_{\text{period}_{experimental}} - \tau_{\text{period}_{analytical}}}{\tau_{\text{period}_{experimental}}} = ----\%$$

- The error in calculating τ_{period} is smaller/larger (circle one) when one assumes $m_{spring} = 0$.
- Make a rough sketch that is useful for experimentally measuring the *decay ratio*.

 $decayRatio \approx$

• Make a rough estimate of the *damping ratio* ζ . (See Homework 4.6 for details).

 $\zeta \approx$