Solution process for linear, 2^{nd} -order, ODEs 5.7

To solve equation (2) $\frac{d^2y}{dt^2} + 2\zeta \omega_n \frac{dy}{dt} + \omega_n^2 y = 0$, begin by assuming a solution of the form (assume a solution of the form Ce^{pt} because it worked for 1^{st} -order ODEs in Section 4.3 and it is the best guess we have).

$$y(t) = C e^{pt}$$
 whose 1^{st} and 2^{nd} derivatives are $\frac{dy}{dt} =$ (10)

where C and p are **constants** to be determined $[C \neq 0 \text{ since } C = 0 \text{ gives the trivial (boring) solution } y(t) = 0].$

Substitute y(t), $\dot{y}(t)$, $\ddot{y}(t)$ from eqn (10) into (2).

$$+ 2 \zeta \omega_n \left(\right) + \omega_n^2 \left(\right) = 0$$

Factor out Ce^{pt} to the right.

$$]*C*e^{pt}=0$$

Section 7.1 and equation (7.1) show $e^{pt} \neq 0$.

$$\left[\begin{array}{c} \\ \end{array}\right] * C = 0$$

Use $C \neq 0$ to get "characteristic equation":

$$\left[\begin{array}{c} \\ \end{array}\right] = 0$$

Solve for p (the values of p are called "**poles**").

$$p_{1,2} = -\zeta \,\omega_n \,\pm\, \omega_n \,\sqrt{\zeta^2 - 1} \quad (11)$$

Assemble the solution.

$$y(t) = C_1 e^{p_1 t} + C_2 e^{p_2 t}$$

If needed: Answers to these interactive questions are at www.MotionGenesis.com \Rightarrow Textbooks \Rightarrow Resources.

Solution process for linear, n^{th} -order, constant-coefficient ODEs 5.7.1

The characteristic equation in the previous section was a quadratic equation for p and had two roots, p_1 and p_2 . More generally, the solution process in the previous section works for **any order** linear, constant-coefficient, ODE and results in a characteristic polynomial equation in p.

$$\begin{array}{lll} 1^{st}\text{-order} & a_1\,p\,+\,a_0=0 & \text{Solve linear equation as} & p=-a_0/a_1. \\ 2^{nd}\text{-order} & a_2\,p^2\,+\,a_1\,p\,+\,a_0=0 & \text{Solve with } \textit{quadratic equation.} \\ 3^{rd}\text{-order} & a_3\,p^3\,+\,a_2\,p^2\,+\,a_1\,p\,+\,a_0=0 & \text{Solve with calculator or computer.} \\ n^{th}\text{-order} & a_n\,p^n\ldots\,+\,a_3\,p^3\,+\,a_2\,p^2\,+\,a_1\,p\,+\,a_0=0 & \text{Solve with calculator or computer (eigenvalue routine).} \end{array}$$

Derivation of solution for undamped 2nd-order ODE

When $\zeta = 0$ undamped, equation (2) simplifies to $\frac{d^2y}{dt^2} + \omega_n^2 y = 0$ and the roots p_1 and p_2 simplify to

$$p_1 = +i \omega_n \qquad p_2 = -i \omega_n \tag{12}$$

With these two roots and Euler's formula [equation (5.6)], there are two solutions of the ODE.

$$y_1(t) = C_1 e^{p_1 t} = C_1 e^{i\omega_n t} = C_1 [\cos(\omega_n t) + i\sin(\omega_n t)]$$
 (13)

$$y_2(t) = C_2 e^{p_2 t} = C_2 e^{-i\omega_n t} = C_2 \left[\cos(\omega_n t) - i\sin(\omega_n t)\right]$$
 (14)

$$y_{1}(t) = C_{1}e^{p_{1}t} = C_{1}e^{i\omega_{n}t} = C_{1}\left[\cos(\omega_{n}t) + i\sin(\omega_{n}t)\right]$$
(13)

$$y_{2}(t) = C_{2}e^{p_{2}t} = C_{2}e^{-i\omega_{n}t} = C_{2}\left[\cos(\omega_{n}t) - i\sin(\omega_{n}t)\right]$$
(14)

$$y(t) = y_{1}(t) + y_{2}(t) = \left(\frac{C_{1} + C_{2}}{(1314)}\right)\cos(\omega_{n}t) + \left(\frac{C_{1} - C_{2}}{(101)}\right)i\sin(\omega_{n}t)$$
(15)

Since C_1 and C_2 are yet-to-be-determined constants, they can be replaced by two new other undetermined constants A and B (defined below) so y(t) can be written as:

$$A \triangleq C_1 + C_2$$
 $B \triangleq (C_1 - C_2)i$ \Rightarrow $y(t) = A \cos(\omega_n t) + B \sin(\omega_n t)$

Alternatively, y(t) can be rewritten using the "amplitude-phase" formula [equation (2.21)] as

$$y(t) = \bar{C} \cos(\omega_n t + \phi)$$
 where $\bar{C} = \sqrt{A^2 + B^2}$ $\phi = \text{atan2}(-A, B)$