
Chapter 25

Undamped coupled 2nd-order ODEs

Summary (see examples in Hw 13)

Many physical phenomena are governed by a set of n
coupled undamped linear, constant-coefficient, homoge-
neous ODEs. These include free vibrations of buildings,
airplanes, automobiles, space structures, and molecules.
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If B =[0], the ODEs are undamped.
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25.1 Physical insights into eigenvalues and eigenvectors of a slinky

Two rulers connected to a slinky (spring) demonstrate the physical significance of eigenvalues/eigenvectors.

Shown below are rulers A and B moving in the first
mode, moving up ↑↑↑↑↑↑↑↑↑↑↑↑↑ together or down ↓↓↓↓↓↓↓↓↓↓↓↓↓ together.
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Shown below are rulers A and B moving in the
second mode, moving in opposite directions.
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Mode Eigenvalue Eigenvector Potential Energy Kinetic Energy Total Energy
# (frequency) (use + or 0 or −) ( 1

2
k δ2) ( 1

2
m v2) Kinetic + Potential

1 small/large
[

+
+

]
or

[ −
−

] small /large
one /two deformed spring
min /max deformation

small/large small/large

2 small/large
[

+
−

]
or

[ −
+

] small/ large
one/ two deformed springs

min/ max deformation
small/large small/large
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This motivating example shows that eigenvalues and eigenvectors are physically identifiable through how the rulers move

(frequency and direction). As is apparent in this physical demonstration and is generally true, the total energy in a high

frequency mode is larger than the energy in a low frequency mode.
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25.2 Solution of undamped, coupled ODEs

X(t) n×1 matrix of time-dependent variables
M n×n matrix of constants (mass matrix)

B n×n matrix of constants (damping matrix)

K n×n matrix of constants (stiffness matrix)

G n×p matrix of constants
F (t) p×1 matrix of known functions of time

f1(t) . . . fp(t) (forcing function matrix)

Any set of n coupled, linear, constant-coefficient,
2nd-order ODEs can be written in the matrix form

M
(n×n)

Ẍ + B
(n×n)

Ẋ + K
(n×n)

X = G
(n×p)

F
(p×1)

(1)

When B = [0], this set of ODEs are undamped.

When B �= [0], this set of ODEs are damped.

To solve equation (1), write X(t) = Xh(t) + Xp(t) (the sum of a homogeneous and

particular solution). The homogeneous solution Xh(t) can be found by assuming
a solution of the form shown in equation (2), where p is a yet-to-be-determined
constant and U is a yet-to-be-determined non-zero n×1 matrix of constants.a

aIt is reasonable to guess Xh(t) = U ep t because it worked for uncoupled linear ODEs.
The matrix U is non-zero because U = [0] produces the trivial solution Xh(t) = [0], which
is not a solution of interest (not what we are looking for).

Xh(t) = U ep t (2)

U �
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
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Substituting/differentiating equation (2) into the homogeneous part of equation (1) (F = [0]), gives

M
[

p2 U ep t
]

+ B
[

p U ep t
]

+ K
[

U ep t
]

=
(1, 2)

[0] Factor on Uep t

[
p2 M + p B + K

]
U ep t = [0] Section 7.1 shows ep t �= 0

[
p2 M + p ���

0

B + K
]
U = [0] Sometimes B ≈ [0] (see undamped below)[

p2 M + K
]

U = [0] Define: λ � −p2 p = ±√
−λ

Generalized eigen-equation
[

−λM + K
]
U = [0] ⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒ det

[
−λM + K

]
= 0 (3)

This eigen-equation is a coupled nonlinear algebraic equation. It has nnnnnnnnnnnnn equations and n + 1n + 1n + 1n + 1n + 1n + 1n + 1n + 1n + 1n + 1n + 1n + 1n + 1 unknowns in λ and U .
The related det [−λ M + K] = 0 is 1111111111111 uncoupled nonlinear algebraic equation with 1111111111111 unknown λ.
Equation (1) ⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒ (3) changes nnnnnnnnnnnnn coupled ODEs with nnnnnnnnnnnnn unknowns into a eigen-equation.

Undamped: It can be reasonable to set B = [0] if:
• Damping is small.
• It is difficult to analytically or experimentally determine the elements of the damping matrix.
• In structural vibrations, damping is approximated with modal damping (see Section 25.6).

For eigen-equation (3) to produce a non-zero U (and non-zero Xh), the inverse of [−λ M + K] must not exist. To see this,

suppose [−λM+K]
−1 does exist and multiply both sides of the eigen-equation by [−λ M + K]

−1, which produces U = [0].

For U �= [0], one must find special values of λ so [−λ M + K]
−1 does not exist. These special values λ1, λ2, . . . , λn are

called eigenvalues. For each λi, there is a corresponding special non-zero Ui called the eigenvector corresponding to λi.
Note: The eigenvalue problem is a special nonlinear algebraic equation because the number of solutions is known apriori.

The following are equivalent statements about equation (3) and finding the eigenvalues λ:
• Find the values of λ which result in U �= [0].
• Find the values of λ so the matrix [−λM + K] is singular, i.e., [−λM + K]−1 does not exist.

• Find the values of λ so the determinant of [−λM + K] is zero, i.e., det [−λM + K] = 0
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