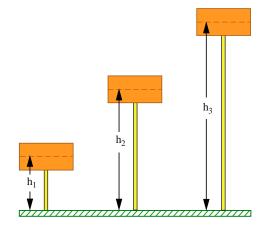


Questions to consider with discrete data: How quickly and how long to sample?

Name	Symbol	Associated question	
Highest frequency	В	Highest expected frequency? (Hz)	
Frequency resolution	$\Delta \omega_{ ext{H}}$	How fine a resolution in the frequency domain?	
Sampling rate	$\Delta t < \frac{1}{2B}$	How often do you sample the function? (Nyquist criteria)	
Total sampling time	$t_{\mathrm{final}} > \frac{1}{\Delta \omega_{\mathrm{H}}}$	How long do you sample?	
Note: If you want fine resolution in the frequency domain (e.g., resolve differences between 0.012 Hz and 0.013 Hz)			
vou must sample for a long time. However, you do not necessarily have to take many samples.			


Ideal: Sample quickly (small Δt) to "hear" highest frequency. Sample for a long time (large t_{final}) to get fine frequency resolution (small $\Delta \omega_{\text{H}}$). The cost is a large **number of samples** $N = \frac{t_{\text{final}}}{\Delta t}$ (collect data frequently and for a long time).

Earthquakes and building shaking

Listed below are geometry and material for three "buildings":

Description	Symbol	Value
Building heights	h_1	$10 \mathrm{cm}$
	h_2	$20~\mathrm{cm}$
	h_3	$30 \mathrm{cm}$
Mass of block	m	50 g
Radius of wire	r	$0.75 \mathrm{\ mm}$
Wire elastic modulus	E	$200 \times 10^9 \text{ N/m}^2$

The solid cylindrical wire's bending area moment of inertia is $I = \frac{\pi \, r^4}{4} \, = \, 2.65 \, \mathrm{x} \, 10^{-13} \, \mathrm{m}^4$

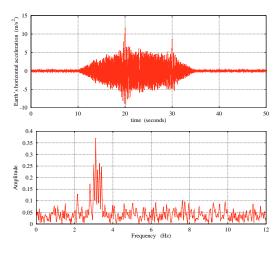
Each building's bending stiffness k_i is approximated using E, I, and h_i (i = 1, 2, 3) as follows. Next, each building's natural vibration frequency is approximated as (in Hz = $\frac{\text{cycles}}{\text{sec}}$)

$$k_1 = \frac{3EI}{h_1^3} = 159 \frac{\text{N}}{\text{m}}$$
 $k_2 = \frac{3EI}{h_2^3} = 20 \frac{\text{N}}{\text{m}}$ $k_3 = \frac{3EI}{h_3^3} = 6 \frac{\text{N}}{\text{m}}$ $f_1 = \frac{1}{2\pi} \sqrt{\frac{k_1}{m}} = 9.0 \text{ Hz}$ $f_2 = \frac{1}{2\pi} \sqrt{\frac{k_2}{m}} = 3.2 \text{ Hz}$ $f_3 = \frac{1}{2\pi} \sqrt{\frac{k_3}{m}} = 1.7 \text{ Hz}$

You are tasked with collecting 50 seconds of ground acceleration data. Approximately what sampling rate would you choose to ensure you see a range of frequencies relevant for concern about building shaking?

¹Since **bandwidth** $B \triangleq \omega_{\text{high}} - \omega_{\text{low}}$ and usually for Fourier transforms $\omega_{\text{low}} = 0$, hence $B = \omega_{\text{high}}$.

Result:


• Concerned about frequencies: — – HzHz

• Sample at a minimum of:

Consider the time-data (top-right) and its Discrete Fourier Transform (bottom-right).

Based on this information the building that probably shakes most is ___ cm_ high.

Note: This data was sampled at 100 Hz $\,$ (much higher than needed).

