### Chapter 22 # $AU = \lambda U$ $AU = \lambda BU$ ## Eigenvalues and eigenvectors #### What is a matrix eigenvalue problem? (see examples in Hw 12) An *eigenvalue* is a "special value" of $\lambda$ that allows equation (1) to produce <u>non-zero</u> U.<sup>1</sup> - $\lambda$ is an unknown <u>scalar</u> (called an *eigenvalue*). - $U \neq [0]$ is a unknown $n \times 1$ column matrix (called an *eigenvector*). $Matrix(\lambda) * U = [0]$ (1) • Matrix( $\lambda$ ) is an $n \times n$ matrix that depends on $\lambda$ . [0] is the $n \times 1$ zero matrix | Eigenvalue problem | Equation form | Alternative form | Solution for $\lambda$ | |-------------------------|--------------------------------|------------------|-------------------------------------------------------| | $Standard\ eigenvalue$ | $[-\lambda I + A] U = [0]$ | $AU = \lambda U$ | $\det\left[-\lambdaI+A\right] = 0$ | | Generalized eigenvalue | $[-\lambda B + A] U = [0]$ | $AU=\lambdaBU$ | $\det\left[-\lambdaB+A\right] =0$ | | $Quadratic\ eigenvalue$ | $[M\lambda^2+B\lambda+K]U=[0]$ | Not applicable | $\det\left[M\lambda^2+B\lambda+K\right]=0$ | | Nonlinear eigenvalue | $Matrix(\lambda) * U = [0]$ | Not applicable | $\det\left[\operatorname{Matrix}(\lambda)\right] = 0$ | #### 22.1 Recognize and remember: Solving an eigenvalue problem There are similarities between the familiar *quadratic equation* and an *eigenvalue problem*. Both are algebraic equations that are <u>nonlinear</u> in their unknowns, and both have known solutions. It is important to <u>recognize</u> these equations and <u>remember</u> their solutions. | | Quadratic equation | Standard eigenvalue | Generalized eigenvalue | |---------------------------|------------------------------------------|-----------------------------------|----------------------------------------| | Equation form | $ax^2 + bx + c = 0$ | $[-\lambda I + A]U = [0]$ | $[-\lambda B + A]U = [0]$ | | Alternative form | $a x^2 + b x = -c$ | $AU = \lambda U$ | $AU = \lambda BU$ | | Unknowns<br>Equation type | x<br>Nonlinear | $\lambda,\ U$ <b>Nonlinear</b> | $\lambda,\ U$ <b>Nonlinear</b> | | Solution | $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ | $\det\left[-\lambdaI+A\right] =0$ | $\det\left[-\lambdaB+A\right] \;=\; 0$ | #### 22.2 Motivating questions for eigenvalues and eigenvectors (Hw 12.9) Question 1: Solve the following equation for the two unknowns $\lambda$ and U (with the condition $U \neq 0$ ). Since this equation has the special form $\operatorname{Matrix}(\lambda) U = 0$ , it is **recognized** as an **eigenvalue problem**. $$[-\lambda + 3] * U = 0$$ (or alternatively $3U = \lambda U$ ) The solution to this equation is a "special value" of $\lambda$ and an associated <u>non-zero</u> U. Eigenvalue: $$\lambda = 3$$ Eigenvector: $U =$ any number $<sup>^{1}</sup>U$ is a "right" eigenvector for Matrix( $\lambda$ ) \* U = [0], whereas U is a "left" eigenvector for $U * \text{Matrix}(\lambda) = [0]$ . **Question 2:** Find a **non-zero** solution y(t) to the ODE shown below-right. Start by substituting the assumed solution $y(t) = U e^{pt}$ into the ODE where p is a constant (to-bedetermined) and U is a **non-zero** constant.<sup>a</sup> Subsequently, rearrange and simplify using $e^{pt} \neq 0$ . The equation for p is recognized as an eigenvalue problem. The "special value" of p and associated non-zero U are<sup>b</sup> $\dot{y} - 3y = 0$ Eigen-problem: (p-3) U = 0 $y(t) = U e^{3t}$ **Eigenvalue:** p = 3 **Eigenvector:** U =any constant <sup>a</sup> Note: U = 0 produces the trivial (degenerate) solution y(t) = 0, which is <u>not</u> what we are looking for. Hence $U \neq 0$ . $^b$ Note: In ODEs, this "special value" of p is called a pole whereas in matrix algebra p is called an eigenvalue. Question 3: Eigenvalue and eigenvector concepts. (Answers: www.MotionGenesis.com $\Rightarrow$ Textbooks $\Rightarrow$ Resources) Consider the following set of algebraic equations governing the unknowns $u_1$ , $u_2$ , and $\lambda$ . $$\begin{array}{cccc} \lambda \, u_1 \, + & u_2 \, = \, 0 \\ 4 \, u_1 \, + \, \lambda \, u_2 \, = \, 0 \end{array} \qquad \Longleftrightarrow \qquad \left[ \begin{array}{ccc} \lambda & 1 \\ 4 & \lambda \end{array} \right] \left[ \begin{matrix} u_1 \\ u_2 \end{matrix} \right] = \left[ \begin{matrix} 0 \\ 0 \end{matrix} \right]$$ Find "special values" of $\lambda$ (called *eigenvalues*) that allow for $\begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ . Result: For each special value of $\lambda$ determine a corresponding "special ratio" of $u_2$ to $u_1$ . **Result:** (These "special ratios" are called *eigenvectors* and $c_1$ and $c_2$ are arbitrary constants.) For $$\lambda_1$$ : $U_1 \triangleq \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = c_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ For $$\lambda_2$$ : $U_2 \triangleq \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} = c_2 \begin{bmatrix} 1 \\ \end{bmatrix}$ #### Question 4: Eigenvalues for an unusual (nonlinear) eigenvalue problem. Consider the following set of algebraic equations governing the unknowns $u_1$ , $u_2$ , and $\lambda$ . $$\lambda^2 u_1 + 5 u_2 = 0$$ whose matrix $(\cos(\lambda) - 0.9) u_1 + \lambda u_2 = 0$ form is: Find an equation, which when solved produces "special values" of $\lambda$ that allow for $\begin{vmatrix} u_1 \\ u_2 \end{vmatrix} \neq \begin{vmatrix} 0 \\ 0 \end{vmatrix}$ **Result:** (These "special values" of $\lambda$ are called *eigenvalues*.) = 0 Note: It is questionable whether this eigen-problem can be cast as a standard or generalized eigenvalue problem. Three eigenvalues that satisfy this equation are: $\lambda_1 = -1.7574$ , $\lambda_2 = -0.5078$ , $\lambda_3 = +0.4166$ . **Question 5:** Solve the following set of linear algebraic equations for x and y (for given values of d). u = 0 Answers at $\underline{\text{www.MotionGenesis.com}} \Rightarrow \underline{\text{Textbooks}} \Rightarrow \underline{\text{Resources}}$ Note: The **special value** d = -1 is the **only** value of d that produces a **non-zero** solution for x and y. Note: One way to solve for this **special value** of d is by setting the determinant of the $2 \times 2$ matrix equal to 0, Note: This is recognized as an eigenvalue problem if the question is: Find the special value of d that allows for $\begin{bmatrix} x \\ y \end{bmatrix}$