Chapter 15

Complex numbers

$$i \triangleq \sqrt{-1}$$

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Summary: Tools and use for complex numbers (see examples in Hw 8, 9)

This chapter provides algebraic tools for complex numbers $(+, *, /, \sqrt{}, \text{ and powers})$. Complex numbers are useful in many aspects of dynamic systems, including:

Solving 2^{nd} , 3^{rd} , and higher-order ODEs	Root locus	Circuit analysis
Control system design	Frequency response	Eigen-analysis

Motivating the imaginary number i

• The following invalid proof that 1 = -1 involves the imaginary number i defined as $i \triangleq \sqrt{-1}$. Circle the incorrect step in the proof and explain your reasoning (solution in footnote at bottom of page).

$$1 = \sqrt{1} = \sqrt{(-1)^2} = \sqrt{-1} * \sqrt{-1} = i * i = i^2 = -1$$

• Find all real and/or complex numbers that can appear on the right-hand side of the equal signs.

If needed: Answers to these interactive questions are at www.MotionGenesis.com \Rightarrow Textbooks \Rightarrow Resources.

Complex numbers are used in circuit analysis and control system design.

