
Homework 1. Chapter 2.
Basis independent vector operations: -�b s�b �a +�b ∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) �a ············· �b �a × �b

Show work – except for ♣ fill-in-blanks (print .pdf from www.MotionGenesis.com ⇒ Textbooks ⇒ Resources).

1.1 ♣ Solving problems – what physicists and engineers do.
Understanding dynamics results from doing problems. Many problems herein guide
you to help you synthesize processes (imitation). Please do these problems by yourself
or with colleagues/instructors and use the textbook and other resources.

Confucius 500 B.C. “By three methods we may learn wisdom:
“I hear and I forget. 1st by reflection, which is noblest;
I see and I remember. 2nd by imitation, which is easiest;
I and I understand.” 3rd by experience, which is the bitterest.”

1.2 ♣ What is a vector (as defined by Gibbs circa 1897)? (Section 2.2)

Two properties (attributes) of a vector are and (fill in the blanks).

1.3 ♣ What is a zero vector? (Section 2.3)

A zero vector �0 has a magnitude of 0 (
���0�� = 0). True/False (circle true or false).

A zero vector �0 has a direction. True/False
any�Vector + �0 = any�Vector True/False

1.4 ♣ Unit vectors. (Section 2.4)

All unit vectors have a magnitude of 1 (e.g.,
∣∣̂i∣∣ = 1,

∣∣̂j∣∣ = 1,
∣∣k̂∣∣ = 1). True/False

Typically, a unit vector is denoted with a hat, e.g., as k̂ rather than �k. True/False

All unit vectors are equal. True/False

A unit vector û in the direction of the non-zero vector �v is û = �v∣∣�v∣∣ . True/False

1.5 ♣ Draw the vectors �a, �b, ĉ, d̂ (Section 2.2)

�a Horizontally-right vector.
�b Vertically-upward vector.
ĉ Outwardly-directed unit vector.
d̂ Inwardly-directed unit vector.

1.6 ♣ Equal vectors? Equal position vectors? (Section 2.5)

For the generic vectors �a and �b shown right, �a = �b True/False .
For the position vectors �p and �q shown right, �p = �q True/False .

pa
b

q

1.7 ♣ Negating a vector. (Section 2.8)

Draw the vector -�b. Negating the vector �b results in a vector with different:
magnitude direction orientation sense (circle all that apply)

Historical note: Negative numbers (e.g., -3) were not widely accepted until 1800 A.D.

b

1.8 ♣ Vector magnitude and direction (orientation and sense). (Section 2.2)

The figure to the right shows a vector �v. Draw the vectors �a, �b, �c, �d, �e.
�a Same magnitude and direction as �v (�a = �v).
�b Same magnitude as �v, with �b = -�v (antiparallel).
�c Same magnitude as �v, but different direction with �c �= -�v.
�d Smaller magnitude than �v, but same direction as �v.
�e Different magnitude and different direction than �v.

v
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1.9 ♣ Vector magnitude and direction. (Section 2.2)

Knowing x is a real number (e.g., -3 or 0 or 7.8) and û is a
horizontal unit vector , complete magnitude with ≤≤≤≤≤≤≤≤≤≤≤≤≤
or ≥≥≥≥≥≥≥≥≥≥≥≥≥ and complete direction with +û or -û.

Vector with Magnitude Direction
x û x ≥ 0

∣∣x û
∣∣ ≥≥≥≥≥≥≥≥≥≥≥≥≥ 0 +û

x û x ≤ 0
∣∣x û

∣∣ 0
-x û x ≥ 0

∣∣ -x û
∣∣ 0

-x û x ≤ 0
∣∣ -x û

∣∣ 0

1.10 ♣ Multiplying a vector by a scalar. (Section 2.7)

The following statements involve a unit vector û and a real scalar s (s �= 0).
If a statement is true, provide any numerical value for s that supports your
answer, and if true also draw a corresponding vector, i.e., �a or �b or �c.
s û can have a different magnitude than û. If true s = , draw �a.
s û can have a different direction than û. If true s = , draw �b.
s û can have different magnitude and direction than û. If true s = , draw �c.

u

1.11 ♣ Graphical vector addition/subtraction. (Sections 2.6, 2.8)

Draw �a +�b Draw �b +�a Draw �a + -�b Draw �b −�a Draw -�a −�b

b

a

1.12 ♣ Angle ∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) between vectors. (Section 2.9)

For the figure shown right, determine the numerical value
for the angle between vector �a and vector �b.
Result: ∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) = ◦

b

a

30o

30o

1.13 ♣ Visual representation of a vector dot-product. (Section 2.9)

Write the definitionof the dot-product of a vector �a with a vector �b.
Include a sketch with each symbol in your definition clearly labeled.
Result: �a ············· �b �

Knowing �a and �b are arbitrary vectors, complete the blanks with ≤ , = , or ≥ .

When the angle between �a and �b is 0◦ �a ············· �b 0 (parallel)

When the angle between �a and �b is 90◦ �a ············· �b 0 (perpendicular)

When the angle between �a and �b is 180◦ �a ············· �b 0 (antiparallel)

For arbitrary vectors �a and �b, �a ············· �b �b ············· �a
Sketch should include

�a, �b,
∣∣�a∣∣, ∣∣�b∣∣, θ.

1.14 ♣ Visual representation of a vector cross-product. (Section 2.10)

Write the definition of the cross-product of a vector �a with a vector �b.
Include a sketch with each symbol in your definition clearly labeled.
Result: �a × �b � (θ) û

where û is

and θ is

Knowing �a and �b are non-zero vectors, complete the blanks with = or �= .

When the angle between �a and �b is 0◦ �a × �b �0 (parallel)

When the angle between �a and �b is 90◦ �a × �b �0 (perpendicular)

When the angle between �a and �b is 180◦ �a × �b �0 (antiparallel)

For arbitrary vectors �a and �b, �a × �b �b × �a

Sketch should include
�a, �b,

∣∣�a∣∣, ∣∣�b∣∣, θ, û.
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1.15 Properties of vector dot/cross-products Draw/show work. �a �= �0, �b �= �0. (Sections 2.9.1, 2.10)

When �a is parallel to �b, �a ············· �b = 0 True/False �a ×�b = �0 True/False

When �a is perpendicular to �b, �a ············· �b = 0 True/False �a ×�b = �0 True/False

For arbitrary vectors �a and �b, �a ············· �b = �b ·············�a True/False �a ×�b = �b ×�a True/False

1.16 Dot-products and cross-products via definitions. Show work. (Sections 2.9, 2.10)

• Draw a unit vector k̂ outward-normal to the plane of the paper (perpendicular to �a and �b).
• Redraw each figure to clarify ∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b), the angle between �a and �b (useful for dot and cross-product).
• Knowing

∣∣�a∣∣ = 2 and
∣∣�b∣∣ = 4, calculate each expressions below (2+ significant digits) using only

the definitions of dot-product and cross-product.

a

b

∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) = ◦

�a ············· �b =

�a × �b = -8 k̂

a

b

∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) = ◦

�a ············· �b =

�a × �b =

a

b

60o

∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) = ◦

�a ············· �b =

�a × �b =

a

b

60o

∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) = ◦

�a ············· �b =

�a × �b =

1.17 Visual estimation of vector dot/cross-products. Show work. (Sections 2.9, 2.10)

Estimate the magnitude of the vector �q shown below, the angle between �p and �q, �p ············· �q, and the
magnitude of �p × �q. Show work and redraw to clarify the angle between �p and �q.
Result: (Provide numerical results with 1 or more significant digits).∣∣�p∣∣ ≈ 4.0 cm

∣∣�q∣∣ ≈ cm ∠∠∠∠∠∠∠∠∠∠∠∠∠(�p, �q) ≈ ◦

�p ············· �q ≈ cm2
∣∣�p × �q

∣∣ ≈ cm2

q
pNote: 1 inch = 2.54 cm

1.18 ♣ Vector operations and units. (Chapter 2)

Each vector operation below involves a position vector �r (with units of m) and/or a velocity vector
�v (with units of m

s
). Determine whether the operation produces a well-defined scalar or vector or is

undefined. If well-defined, determine the associated units.

Operation: -�r 5�v 5 m
s

+ �v �r + 2�r �r + �v 5 m
s
············· �v �r ············· �v �r × �v

Produces: vector

Units: meters

1.19 ♣ Vector exponentiation: �v2 = �v ············· �v and �v3. (Section 2.9)

The following is a reasonable proof that �v2 = �v ············· �v. True/False (if False, provide a proof).

�v2 �
∣∣�v∣∣2 �v ············· �v �

(2.2)

∣∣�v∣∣ ∣∣�v∣∣ cos(0◦) =
∣∣�v∣∣2 �v2 = �v ············· �v

Complete the proof that relates �v3 to �v ············· �v raised to a real number.
Result: ∣∣�v∣∣ =

(2.4)

√
············· �v3 �

∣∣�v∣∣ =
( √

············· )
= (�v ············· �v)

3
2

1.20 ♣
∣∣c âx

∣∣ Calculate vector magnitude with dot products. (Section 2.9 and Hw 1.19)

Show how the vector dot-product can be used to show that the magnitude of the vector c âx (c is a
positive or negative number and âx is a unit vector) can be written solely in terms of c (without âx).
Result: ∣∣c âx

∣∣ = +
√

············· = +
√

c2 ∗ ············· = +
√

c2 = abs(c)
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1.21 †††††††††††††(Challenge) Magnitude of the vector �v. Show work. (Section 2.9)

Knowing the angle between a unit vector î and unit vector ĵ is 120◦,
calculate a numerical value for the magnitude of �v = 3 î + 4 ĵ.
Result: ∣∣�v∣∣ =

√
13 Note: The answer is not

√
25 = 5.

i

j

1.22 ♣ Property of scalar triple product. (Section 2.11)

For arbitrary non-zero vectors �a, �b, �c: �a ············· (�b ×�c) = (�a × �b) ·············�c Never/Sometimes/Always
A property of the scalar triple product is �a ············· �b ×�a = 0. True/False .

1.23 ♣ Property of vector triple cross-product. (Sections 2.10, 2.11)

Complete the following equation: �a × (
�b ×�c

)
= �b

( ) − �c
( )

For arbitrary vectors �a, �b, �c: �a × (�b×�c) = (�a×�b)× �c + �b × (�a×�c) True/False (show work).

1.24 ♣ Form the unit vector û having the same direction as c âx. (Section 2.4)

Result: û = âx Note: âx is a unit vector and c is a non-zero real number, e.g., 3 or -3.

1.25 ♣ Coefficient of û in cross products – definitions and trig functions. (Section 2.10)

The cross product of vectors �a and �b can be written in terms of a real scalar s as �a×�b = s û
where û is a unit vector perpendicular to both �a and �b in a direction defined by the right-hand
rule. The coefficient s of the unit vector û is inherently non-negative. True/False .

1.26 ♣ Ranges of angles from dot-product and cross-product calculations. (Sections 2.9, 2.10)

Quantity Numerical range of values
c = â ············· b̂ (assume �a and �b are known so a numerical value for �a ············· �b can be calculated). ≤ c ≤
s =

∣∣â × b̂
∣∣ (assume �a and �b are known so a numerical value for

���a × �b�� can be calculated). ≤ s ≤
Angle θc between â and b̂ that can be uniquely determined solely from c.

◦ ≤ θc ≤ ◦

Use the principal range available from a simple calculator’s inverse sine and inverse cosine.

Angle θs between â and b̂ that can be uniquely determined solely from s.
◦ ≤ θs ≤ ◦

Use the principal range available from a simple calculator’s inverse sine and inverse cosine.

Angle θ between â and b̂, i.e., θ = ∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b)
◦ ≤ θ ≤ ◦

Note: The range of θs is smaller than the range for θ. Hence, s and θs are insufficient to correctly calculate θ.
What this means: Use the dot-product ············· to calculate an angle θ from two given/known vectors â and b̂.

1.27 ♣ Using vector identities to simplify expressions (refer to Homework 1.15)

One reason to treat vectors as basis-independent quantities is to simplify vector expressions with-
out resolving the vectors into orthogonal “�x, �y, �z” or “�i,�j, �k” components. Simplify the following
vector expressions using mathematical properties of dot-products and cross-products.

Express results in terms of
dot-products ············· and cross-
products × of the arbitrary
vectors �u, �v, �w.
�u, �v, �w are not
necessarily orthog-
onal or coplanar.

w

v
u

Vector expression Simplified vector expression

(3�u − 2�v) × (�u + �v) �u×�v

(3�u − 2�v) ············· (�u + �v) �u2 − �v2 + �u ············· �v

(�u − �v) ············· (�u + �v) −
(3�u − 2�v) × (�u + �v) ············· (2�u − 7�v)
(�u + �v) × (�v + 2 �w) ············· (�w + 2�u) �u ×�v ············· �w

Copyright c© 1992-2025 Paul Mitiguy. All rights reserved. 138 Homework 1: Vectors – basis independent



1.28 ♣ Vector concepts: Solving a vector equation? (Section 2.9.3)

Shown right is a vector equation and a questionable process that solves
for vx (âx is a unit vector and vx, θ̇, R are scalars).
This is a valid process to solve for vx. True/False .

vx âx = θ̇ R âx

vx = θ̇ R
âx

âx
= θ̇ R

Explain:

1.29 Change a vector equation to scalar equations. Show work. (Section 2.9.3)

Shown right are three mutually orthogonal unit vectors p̂, q̂, r̂.
Use a vector operation (e.g., +, ∗, ············· , × ) to change the vector equation (2x−4) p̂ = �0
into one scalar equation and subsequently solve the scalar equation for x.
Result: (2x − 4) p̂ = �0 ??⇒ (2x − 4) = 0 ⇒ x = 2

Show every vector operation (e.g., +, ∗, ············· , × ) that changes the following vector equation
into three scalar equations and subsequently solve the scalar equations for x, y, z.

(2x − 4) p̂ + (3 y − 9) q̂ + (4 z − 16) r̂ = �0
Result: (2x − 4) = 0 (3 y − 9) = 0 ( ) = 0

x = 2 y = 3 z = 4

†††††††††††††Optional: The figure to the right shows three non-orthogonal, non-coplanar vec-
tors �i,�j, �k. Show every vector operation that changes the following vector equation
into three uncoupled scalar equations and subsequently solve those scalar equations
for x, y, z.

(2x − 4)�i + (3 y − 9)�j + (4 z − 16) �k = �0
Result: (2x − 4) = 0 (3 y − 9) = 0 ( ) = 0

x = 2 y = 3 z = 4
Hint: think × ············· ,
not matrix algebra.

i

j

k

1.30 ♣ Number of independent scalar equations from 1 vector equation. (Section 2.9.3)

The vector equation shown right is useful for static analyses of a system S. �F
S

= �0

In the table to the right, box all integers that could be equal to
the number of independent scalar equations produced by the
previous vector equation. Hint: Hw 1.29. Related Hw 13.15.

System type Integer(s)
1D (line) 0 1 2 3 4+

2D (planar) 0 1 2 3 4+

3D (spatial) 0 1 2 3 4+

Note: 1D/linear means �F
S

can be expressed in terms of one vector î.
2D/planar means �F

S
can be expressed in terms of two non-parallel unit vectors î and ĵ.

3D/spatial means �F
S

can be expressed in terms of three non-coplanar unit vectors î, ĵ, k̂.

1.31 ♣ Vector concepts: Solving a vector equation (just circle true or false and fill-in the blank).
Consider the following vector equation written in terms of the scalars x, y, z
and three unique non-orthogonal coplanar unit vectors â1, â2, â3.

(2x − 4) â1 + (3 y − 9) â2 + (4 z − 16) â3 = �0

The unique solution to this vector equation is x = 2, y = 3, z = 4. True/False .

a3 a2

a1

Explain: â2 can be expressed in terms of â1 and â3 (i.e., �a2 is a linear combination of �a1 and �a3).
Hence the vector equation produces linearly independent scalar equations.
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1.32 ♣ Gibbs vectors (≈1900 AD) revolutionizes Euclidean geometry (300 BC).

For each geometrical quantity shown right, circle the
vector operation(s) (dot-product, cross-product, or both)

that is most useful for their calculation.

Distance: ············· × Angle: ············· ×
Section 2.9.2 Section 2.9.2

Area: ············· × Volume: ············· ×
Section 2.10.1 Section 2.11.1

1.33 ♣ Order of operations with vector dot products (·········································································································································································) and cross products (×××××××××××××). (Chapter 2)

Create a valid expression by adding parentheses to each expres-
sion or ������������cross-out the expression if it is inherently invalid.
Example: 3 ∗�a + �b ⇒ (((((((((((((3 ∗�a))))))))))))) + �b.

�a ············· �b +�c �a ············· �b ×�c �a + 5 ×�c

�a ×�b +�c �a × �b ·············�c �a ············· �b ············· �c

1.34 †††††††††††††Microphone cable lengths (non-orthogonal walls) “It’s just geometry”. Show work.

• A microphone Q is attached to three pegs A, B, C by three cables. Knowing the peg locations,
microphone location, and the angle θ between the vertical walls, express LA, LB , LC solely in terms
of numbers and θ. Next, complete the table by calculating LB when θ = 120◦.

A C

Q

No

1520

5

7

8

Note: The floor is horizontal, the walls are vertical. 

B

8

θ

LA

w

v

u

LB LC

Distance between A and B 20 m
Distance between B and C 15 m
Distance between No and B 8 m
Distance along back wall (see picture) 7 m
Q’s height above No 5 m
Distance along side wall (see picture) 8 m
LA: Length of cable joining A and Q 16.9 m
LB: Length of cable joining B and Q 8.1 m
LC : Length of cable joining C and Q 14.2 m

No�rQ = 7 û + 5 v̂ + 8 ŵ

Result: LA =
√

202 − cos(θ) LB =
√

122 + 112 cos(θ) LC =
√

− 128

Hint: To do this efficiently, use only unit vectors û, v̂, ŵ.
Hint: Use the distributive property of the vector dot-product as shown in Section 2.9.1 and Hw 2.4.
Note: Synthesis problems are difficult. Think, talk, draw, sleep, walk, get help, . . . (if needed, read Section 3.3).

Vocabulary: This is inverse kinematics . The position of “end-effector” Q is known and you determine the cable lengths.

• Using a dot-product, show the angle β between lines B No and B Q is β ≈ 68.33◦ .
Optional: Verify the calculation of β using the law of cosines.
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Homework 2. Chapters 1, 2, 3, 4.
Vector addition, dot products, and cross products: + ············· ×

Show work – except for ♣ fill-in-blanks (print .pdf from www.MotionGenesis.com ⇒ Textbooks ⇒ Resources).

2.1 ♣ Right-handed, orthogonal, unit vectors. (Section 4.1)

Draw a set of right-handed orthogonal (mutually perpendicular) unit vectors
consisting of n̂x, n̂y, n̂z. In other words, draw n̂x, n̂y, n̂z so that n̂y is
perpendicular (orthogonal) to n̂x and n̂z = n̂x × n̂y.

2.2 ♣ Adding and subtracting vectors. (Sections 2.6, 2.8)

Given: Vectors �p and �q expressed in terms of unit vectors
î, ĵ, k̂. Form the vector sums and differences below.
Result:

�p = a î + b ĵ + c k̂
�q = x î + y ĵ + z k̂

�p + �q = (a + x) î + ( ) ĵ + ( ) k̂ �p − �q = (a − x) î + ( ) ĵ + ( ) k̂

2.3 ♣ Words: Physical vectors and column matrices. (Section 2.1, Hw 1.2)

True/False As defined by Gibbs and for �F = m�a, physical vectors have magnitude and direction.
True/False In math (linear algebra), a column matrix is called a “vector”.
True/False The physical vector âx + 2 ây + 3 âz can be written

[
âx ây âz

]∗

1

2
3


.

Note: âx, ây, âz are the orthogonal unit vectors shown below.

True/False The physical vector âx + 2 ây + 3 âz is equal to the column matrix


1

2
3


.

True/False âx + 2 ây + 3 âz + 4 b̂x + 5 b̂y + 6 b̂z =


1

2
3


+


4

5
6


=


5

7
9




(âx, ây, âz and b̂x, b̂y, b̂z are shown right). ax

ay

az

bx

bz

by

• Complete the following statement with one equal sign = and one not-equal sign �= .

âx + 2 ây + 3 âz
[
âx ây âz

]∗

1

2
3





1

2
3




2.4 ♣ Fast orthogonal dot-product formula. (Sections 2.9, 2.9.4)

Given: Vectors �a and �b expressed in terms of right-handed orthogonal unit
vectors î, ĵ, k̂, as: �a ············· �b = (ax î + ay ĵ + az k̂)︸ ︷︷ ︸

�a

············· (bx î + by ĵ + bz k̂)︸ ︷︷ ︸
�b

i

j

k

• Use the distributive property for dot products to write �a ············· �b in terms of î ············· î, î ············· ĵ, etc.
• Next, use the definition of the dot product to calculate î ············· î, î ············· ĵ, etc. (below-right).
• Simplify �a ············· �b to form the fast orthogonal dot-product formula .
Result: �a ············· �b = ax bx î ············· î + ax by î ············· ĵ + î ············· k̂

+ ay bx ĵ ············· î + ay by ············· + ·············
+ az bx k̂ ············· î + az by ············· + ·············

î ············· î = 1 î ············· ĵ = î ············· k̂ =

ĵ ············· î = 0 ĵ ············· ĵ = ĵ ············· k̂ =

k̂ ············· î = 0 k̂ ············· ĵ = k̂ ············· k̂ =

�a ············· �b = ax bx + ay by + Use this fast orthogonal dot-product formula to calculate
dot-products when î, ĵ, k̂ are orthogonal unit vectors.

Given
�p = 2 î + 3 ĵ + 4 k̂

�q = x î + y ĵ + z k̂

�r = 5 î − 6 ĵ + 7 k̂

Calculate with the fast orthogonal dot-product formula
�p ············· �q = 2 x + 3 y + z �p ············· �p = 29

∣∣�p∣∣ =
√

29

�p ·············�r = �q ············· �q = x2 + +
∣∣�q∣∣ =

√
�q ·············�r = �r ·············�r =

∣∣�r∣∣ =
√

110
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2.5 ♣ Perpendicular vectors (̂i, ĵ, k̂ are orthogonal unit vectors). (Section 2.9)

Draw two vectors �v and �w that are perpendicular. Hence, �v ············· �w = .
When �v = x î + 2 ĵ + 3 k̂ is perpendicular to �w = 4 î + 5 ĵ + 6 k̂, x = .

2.6 Dot products to calculate distance and angles. (Sections 2.9, 3.3)

The figure to the right shows a block with sides of length 2 m,
3 m, 4 m and points A, B, C located at corners. Right-handed
orthogonal unit vectors n̂x, n̂y, n̂z are directed with n̂x from B to
C and n̂y from B to A.

ny
nx

nz

• Express �r (position from A to C) in terms of n̂x, n̂y, n̂z and calculate a numerical value for |�r| 2.
Next, calculate the distance d between A to C (magnitude of �r).
Result: �r = n̂x − n̂y |�r|2 =

(2.4)
�r ············· �r = m2 d =

√
m

• Calculate the unit vector û directed from A to C and the unit vector v̂ directed from A to D.
Result:

û = 3 n̂x − n̂y√ v̂ = n̂x − n̂y − n̂z√
• Calculate ∠BAC (angle between lines AB and AC) and ∠CAD (angle between lines AC and AD).
Result: ∠BAC = ◦ ∠CAD = 47.97◦

2.7 ♣ Construct a unit vector û in the direction of each vector given below. (Section 2.9.2)

Vector Unit vector û

3 î î

-3 î

3 î − 4 ĵ
−

3 î − 4 ĵ + 12 k̂

c î
c

î or sign(c) î
c is a real non-zero number

Note: î, ĵ, k̂ are orthogonal unit vectors.

i

j

k
Ensure your last answer agrees with your
first two answers, e.g., if c = 3 or c = -3.

2.8 ♣ Vector components: Sine and cosine. (Section 1.4)

• Replace each ????????????? in the figure to the right with sin(θ) or cos(θ).
• Use vector addition to express â and b̂ in terms of sin(θ), cos(θ), î, ĵ.
Result:
Reminder:
SohCahToa

â = î + ĵ

b̂ = î + cos(θ) ĵ θ

1

θ 1

a
b

?

?

?

?

j
i
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2.9 ♣ Vector components for a crane-boom. (Section 1.4)

Shown right is a crane whose cab A supports a
boom B that swings a wrecking ball Co.

Right-handed orthogonal unit vectors î, ĵ, k̂ are
directed with î horizontally-right, ĵ vertically-
upward, and k̂ outward-normal to the plane
containing points No, AB, BC, Co.

Draw each position vector listed below. Then
use your knowledge of sine/cosine to resolve
these vectors into î and ĵ components.

LB

x A

θC

N

B

LC

BC

AB

Co

Draw position vectors

Copyright (c) by Paul Mitiguy 2025.  All rights reserved.

θB

No

Position from No to AB
No�rAB = î + ĵ

Position from AB to BC
AB�rBC = î + ĵ

Position from BC to Co
BC�rCo = î + ĵ

Position from No to BC
No�rBC = [ + ] î + ĵ

Position from No to Co
No�rCo = [ ] î + [LB sin(θB) − LC cos(θC)] ĵ

2.10 Dot products and distance calculations. Show work. (Section 2.9)

Shown right is a crane whose cab A supports
a boom B that swings a wrecking ball Co. To
prevent the wrecking ball from hitting a car,
the distance between No and point BC (the
tip of the boom) must be controlled.

To start this problem, express �r (the position

vector from No to BC) in terms of x, LB , n̂x, b̂x.

Result: �r = n̂x + b̂x

LB

x A

θC

N

B

LC

BC

AB

Co
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θB

No

• Without resolving �r into n̂x and n̂y components, use |�r| =
√
�r ·············�r [from equation (3.1)] and the

distributive property to calculate the distance between No and BC in terms of x, LB, θB.
Result: (if stumped, hint below).1 Optional: Calculate |�r| when x = 20 m, LB = 10 m, θB = 30◦.

Distance between No and BC: |�r| =
√

2 + 2 + 2xLB cos(θB) ≈ 29.1 m

• Homework 2.9 showed �r can be expressed as �r = [x + LB cos(θB)] n̂x + LB sin(θB) n̂y.
Use this expression to verify your previous result for |�r| =

√
�r ·············�r.

Result: |�r| simplifies to the previous result but uses an inefficient process and sin2(θB) + cos2(θB) = 1.

1Hint: The distributive property for vector dot-multiplication is
�
�a + �b

� ············· ��c + �d
�

= �a ·············�c + �a ·············�d + �b ·············�c + �b ·············�d.

Use the distributive property to express �r ············· �r in terms of x, LB , and �nx ············· �bx. Thereafter, use the dot-product definition

of (�nx ············· �bx) to form �r ············· �r = 2 +
2

+ 2 x LB (�nx ············· �bx) =
(2.2)

2 +
2

+ 2 x LB cos( ).
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2.11 ♣ Cross products with right-handed orthogonal unit vectors. (Section 2.10)

Given: Vectors �v and �w expressed in terms of right-handed orthogonal unit
vectors î, ĵ, k̂, with: �v × �w = (a î + b ĵ + c k̂)︸ ︷︷ ︸

�v

× (x î + y ĵ + z k̂)︸ ︷︷ ︸
�w

i

j

k

• Use the distributive property for cross products to write �v × �w in terms of î× î, î× ĵ, etc.
Next, use the definition of the cross product to calculate î × î, î × ĵ, etc. (below-right).
Result:
�v × �w = a x î × î + a y î × ĵ + î × k̂

+ b x ĵ × î + b y × + ×
+ c x k̂ × î + c y × + ×

î × î = �0 î × ĵ = k̂ î × k̂ = -̂j

ĵ × î = ĵ × ĵ = ĵ × k̂ =

k̂ × î = k̂ × ĵ = k̂ × k̂ =

• Combine your previous results to calculate �v × �w in terms of a, b, c, x, y, z.
Result: �v × �w =

(
b z − )

î +
( − a z

)
ĵ +

( )
k̂

2.12 ♣ Cross products and determinants (orthogonal unit vectors). (Section 2.10.2)

Shown right are arbitrary vectors �v and �w expressed in terms
of right-handed orthogonal unit vectors î, ĵ, k̂. Show that
calculating �v × �w with the distributive property of the
cross product (seen in Hw 2.11) happens to be equal to the
determinant of the matrix shown to the right.
Result: �v × �w =

(
b z − )

î +
( − a z

)
ĵ +

( )
k̂

�v = a î + b ĵ + c k̂

�w = x î + y ĵ + z k̂

�v × �w = det


 î ĵ k̂

a b c
x y z




2.13 ♣ Cross products: Commercial area calculation algorithm (surveying). (Sections 2.10.1, 3.2)

Complex planar objects such as the polygon B below can be decomposed
into triangles for important planar measurements (e.g., farming acreage,
building costs, and mass and area properties of 2D objects).

• Calculate �A2 and �A4, the vector-areas of triangles B0 B2 B3 and B0 B4 B5.
• Account for overlapped areas with positive and negative vector areas.
Result: [Just fill in the calculations for �A2, �A4, and A using eqn(3.3)].

B0

B1

B2

B3

B4

B5

B6

B7

B

by
bxbz

Bcm

�r1 = B0�rB1 = 2.0 b̂x + 2.0 b̂y

�r2 = B0�rB2 = 0.5 b̂x + 2.5 b̂y

�r3 = B0�rB3 = 3.0 b̂x + 4.0 b̂y

�r4 = B0�rB4 = -0.5 b̂x + 7.0 b̂y

�r5 = B0�rB5 = -1.0 b̂x + 5.0 b̂y

�r6 = B0�rB6 = -3.0 b̂x + 6.0 b̂y

�r8 = B0�rB8 = -2.0 b̂x + 0.0 b̂y

�A1 = 1
2

(�r1 ×�r2) = 2 b̂z

�A2 = 1
2

(�r2 ×�r3) = .75 b̂z

�A3 = . . . = 11.5 b̂z

�A4 = . . . = .25 b̂z

�A5 = . . . = 4.5 b̂z

�A6 = 1
2

(�r6 ×�r7) = 6 b̂z

�A =
∑6

i = 1
�Ai =

Area =
∣∣�A∣∣ = �A ············· b̂z = 23.5
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2.14 Biomechanics: Gravity moment for curling �M = �r × �F (Section 2.10)

The figures to the right show an athlete curling a dumbbell (mod-
eled as a particle Q of mass m). The forearm connects to the upper
arm at the elbow (point E). Orthogonal unit vectors n̂x, n̂y, n̂z

are directed with n̂x from E to Q and n̂y vertically upward.
Description Symbol Type
Earth’s gravitational constant g g ≈ 9.8 m

s2

Mass of dumbbell Q m Positive constant
Distance between elbow E and Q L Positive constant

Determine the moment of gravity forces on Q about E as
�M = �r × �F where �r = L n̂x and �F = -m g n̂y.

Result: (in terms of m, g, L, �nz)

�M = �r × �F =

Now consider the forearm making an angle θ with downward
vertical. Form �M and its magnitude

∣∣�M∣∣. Determine the values
of θ (0 ≤ θ ≤ 180◦) that produce maximum and minimum

∣∣�M∣∣.
To simplify

���M��, note m, g, L are positive and for 0 ≤ θ ≤ 180◦, sin(θ) ≥ 0.
Result: (in terms of m, g, L, θ, �nz).

�M = �r × �F =
∣∣�M∣∣ =

Optional: Modeling the elbow as a revolute joint, draw a free-body

diagram (FBD) of the system consisting of the forearm and dumbbell.
Max

∣∣�M∣∣ = at θ =
◦

Min
∣∣�M∣∣ = at θ =

◦
or

◦

2.15 Biomechanics: Gravity force and moment for tennis �M = �r × �F (Section 2.10)

Shown right is an athlete whose arm A swings a tennis racquet B. Point S
(shoulder), Acm (A’s center of mass), and Bcm (B’s center of mass) lie along a line
parallel to a unit vector â. The unit vector d̂ is vertically-downward ↓↓↓↓↓↓↓↓↓↓↓↓↓.
Description Symbol Type
Earth’s gravitational constant g g ≈ 9.8 m

s2

Mass of A, mass of B mA, mB Positive constants
Distances between S and Acm and S and Bcm LA, LB Positive constants
Angle between â and d̂ θ 0 ≤ θ ≤ 180◦

• Form �Fgravity (the net force on A and B due to Earth’s gravity).
• Form

∣∣�M∣∣ (the magnitude of the moment of those gravity forces about S).
Note: �M = S�rAcm × mA g �d + S�rBcm × mB g �d.

Result: �Fgravity = ( ) d̂∣∣�M∣∣ =

Optional: Modeling the athlete grip of the racquet as a weld, draw a free-body diagram (FBD) of the racquet.

Next, choose a model for the shoulder joint and draw a FBD of the system consisting of the arm and racquet.
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2.16 Scalar triple product with bases (Section 2.11).
The figure shows right-handed orthogonal unit vectors î, ĵ, k̂.
Given
�u = 2 î + 3 ĵ + 4 k̂
�v = x î + y ĵ + z k̂
�w = 5 î − 6 ĵ + 7 k̂

Calculate
�u × �v ············· �u =
�u × �v ············· �w = z − x − 6 y

�u ············· �v × �w = z − 45 x − y

i

j

k

Note: There is a unique order of operations in �u×�v ············· �u, but parentheses clarify your work.
• �u×�v ············· �w = �u ············· �v× �w and it is OK to switch ············· and × in scalar triple products. True/False
.

2.17 Locating a microphone (2D). Show work. (Section 1.4)

A microphone Q is attached to two pegs B and C by two cables. Knowing the peg locations, cable
lengths, and points B, C, Q, No all lie in the same plane, determine the distance between Q and No.
Do the problem with Euclidean geometry (e.g., law of cosines), then try vectors (see Hw 1.34).

Q

15

y

89

x

B

nx

ny

C

8

No

?

Distance between B to C 15 m
Distance between No to B h 8 m
Length of cable joining B and Q LB 9 m
Length of cable joining C and Q LC 8 m
Distance between No and Q 9.01 m

Although there are two mathematical answers to this problem, one is
above the ceiling by ≈ 12 m and requires the cables to be in compression.

2.18 †††††††††††††Locating a microphone (3D).
A microphone Q is attached to three pegs A, B, C by three cables. Knowing the peg locations, cable
lengths, and the walls are orthogonal, determine the distance between Q and point No. Show work.

(If needed, hint below).2

A C

Q

No

1520

15 13
11

Note: The floor is horizontal, the walls are vertical. 

nx

ny

nz

B

8

Distance between A to B 20 m
Distance between B to C 15 m
Distance between No to B h 8 m
Length of cable joining A and Q LA 15 m
Length of cable joining B and Q LB 13 m
Length of cable joining C and Q LC 11 m
Distance between No and Q 13.3 m
If Q is above ceiling, distance ≈ 17 m

Note: This is part of the process of a camera targeting a
football/baseball in a stadium or a laser targeting cancer or . . .

Vocabulary: In this forward kinematics analysis, the knowns cable lengths determine the position of “end-effector” Q.

2.19 Optional: Draw the free-body diagram (FBD) for each object below.
A C

Q

No

1520

15 13
11

Note: The floor is horizontal, the walls are vertical. 

B

8 10 kg

10 kg

T

C

W

N

B

θ

BN

rR
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θ 

PFP

B

Q

O
N

h
d

L

L

nx

ny

Bcm
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Particle Q Top block Bottom pulley Rolling spool B Bureau B Entire system
Hw 2.18 Hw 12.13 Hw 12.15 Hw 13.14 Hw 13.10 Hw 11.19

2Hint: See Hw 1.34 or Section 3.3. Introduce unknowns x, y, z so Q’s position from No is x �nx + y �ny + z �nz. Although
nonlinear equations are usually solved with a computer, these can be solved “by-hand”. Or, go to www.WolframAlpha.com
and type
Solve x^2 + (-20+z)^2 + (-8+y)^2 = 225, x^2 + z^2 + (-8+y)^2 = 169, z^2 + (-15+x)^2 + (-8+y)^2 = 121
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