

F=ma Quarter (11-week) schedule: Lectures, homeworks, MIPSI

Week	Quarter (11-week) schedule: Lect	$\frac{2^{nd} \text{ meeting of week}}{2^{nd} \text{ meeting of week}}$
09/22		Vector $+, *, -, \cdot, \times, \vec{\mathbf{v}}^2$, angles
$\frac{09}{29}$	-	Computation: Math, evaluating
00/ =0	Hw 2. Vector computation $+ - \times $	expressions, solving linear/nonlinear
	<u> </u>	algebraic equations. 3D microphone
		problem. Saving/running .m and .al
		files. Graphing.
10/06	Hw 4. Vector bases: Rotation matrices I (due)	Vector computation and geometry (+
	Hw 5. Vector differentiation (due)	- \cdot × magnitude), position vectors,
		rotation matrices. Measurements of
		distance, area, volume, angles.
10/13	Hw 6. Angular velocity/acceleration (due)	Computation: Symbolic differen-
	Direct feedback homework grading - sign up for	tiation, computer solutions to non-
	in/after-class time-slot to meet with an instructor.	linear ODEs. Plotting for precessing
		gyro and torque-free satellite.
10/20	Hw 7. Points: Velocity/acceleration I (due)	Midterm Room TBD
	Carmichael: Inverse kinematics for human neuro-	
	muscular biomechanics $\vec{\mathbf{r}} \Rightarrow \theta, \vec{\mathbf{v}} \Rightarrow \vec{\boldsymbol{\omega}}$.	
	Ashley : $\vec{\mathbf{F}} = m\vec{\mathbf{a}}$ for orbiting particle (Hw 9.6).	
10/27	Hw 9. Particle linear/angular momentum, kinetic	SI/US unit conversions for mass, etc.
	energy, $\vec{\mathbf{F}} = m\vec{\mathbf{a}}$. Projectile motion of base-	Concepts: Moments/products of in-
	ball (with/without air-resistance). FBD, vibra-	ertia. Packing the inertia dyadic suit-
	tion/resonance of mass/spring systems. Lizzie:	case. Dyadics and dot-products.
	Rolling & human hamster wheel $v = \omega r$. Gears.	
11/03		Rigid body formulas: Angular mo-
	Katelyn: Moment of inertia batons lab	mentum and kinetic energy.
11/10	, 30,	Road-maps for translating multi-
	Rattleback Lab.	body systems. Picking systems and
	Center of mass concepts and demos.	drawing their FBDs.
11/17	Hw 14. Translation: Laws of motion (due)	Road-maps for translating and rotat-
	MIPSI project consulting: Submit question,	ing multi-body systems. Picking sys-
	model, system picture, identifier table, team photo.	tems and drawing their FBDs. Air-
11/04	TD1 1 * * XX 1 (G 1) 1	craft trim solution and phugoid mode.
$\frac{11/24}{12/01}$	Thanksgiving Week (Complete home	•
12/01	Hw 15. Systems: Road maps/DAlembert's method	Simulation Project: MIPSI
	Road maps. Tim : Helicopter dynamics & control.	Submit 1 power-point slide with:
		question, picture of system, team
10/11	II 15 MIDGID ' + 5 C' 1 +	photo, answer to question.
12/11		
Final exam Thursday Dec. 11. 3:30-6:30. Bulding 420-41.		
Sat. Dec. 13 - Tues. Jan. 6 Winter break. Grades in Axess.		

