Chapter 2

 $\textbf{Vectors} \ (\triangleq \ \vec{\mathbf{a}} + \vec{\mathbf{b}} \ \vec{-\mathbf{b}} \ \angle (\vec{\mathbf{a}}, \vec{\mathbf{b}}) \ \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \ \vec{\mathbf{a}} \times \vec{\mathbf{b}})$ Examples in Hw 1, 2, 3

In 1881-1903, Gibbs developed *vectors* as a useful combination of magnitude and direction. Vectors are a very important **geometrical tool** (for surveying, motion, optics, graphics, CAD, FEA, etc.).

Symbol	Description	Details
$\vec{0}, \ \hat{\mathbf{u}}$	Zero vector $\vec{0}$ and unit vectors.	Sections 2.3, 2.4
+ - */	Vector addition, negation, subtraction, and scalar multiplication/division.	Sections 2.6 - 2.8
• ×	Vector dot product and cross product.	Sections 2.9, 2.10
$\frac{F_d}{dt}$	Vector differentiation.	Chapters 6, 7

2.1Examples of scalars vectors and dyadics

• A *scalar* is a number, possibly with units (e.g., $7 \frac{\text{m}}{\text{s}}$ or 9 kg), such as

time	density	volume	mass	potential energy	work
distance	$_{\mathrm{speed}}$	angle	weight	kinetic energy	temperature

• A **vector** is a quantity with magnitude and **one** associated direction (e.g., $7\widehat{up}$). For example, a velocity vector has speed (how fast something moves) and direction (which way it is going). A force vector has magnitude (how hard something is pushed) and direction (which way it is shoved). Examples include:

force	velocity	acceleration	translational momentum	In 1884, Gibbs re-defined <i>vectors</i>
torque	angular velocity	angular acceleration	angular momentum	and taught them with 90 lectures.

• A dyad is a quantity with magnitude and two associated directions (e.g., $8\hat{i}\hat{j}$). For example, stress associates with area and force (both regarded as vectors). A *dyadic* is the **sum of dyads** (Chapter 13), e.g., an *inertia dyadic* (Chapter 14) is the sum of dyads associated with moments and products of inertia.

2.2Definition of a vector

A vector is defined as a quantity having magnitude and direction.^a Vectors are represented pictorially with straight or curved arrows (examples below). Vectors are typeset with **bold font** and an $\vec{\mathbf{a}}$ rrow or hat (e.g., $\vec{\mathbf{v}}$ denotes a vector).

Courtesy Bro. Claude

^a A vector's *magnitude* is a real non-negative scalar (e.g., 7 m/s). A vector's *direction* is its *orientation* and sense. A vector is similar to a ray in direction, but a vector has finite magnitude. A vector is similar to a

line segment in magnitude and orientation, but a vector also has a sense (a fully defined direction).

Example of a vector: Consider the statement "the car is moving East at $5 \frac{\text{m}}{\text{s}}$ ". It is convenient to represent the car's speed and direction with the velocity vector $\vec{\mathbf{v}} = 5 \, \hat{\mathbf{E}} \mathbf{ast}$ (a hat designates the direction $\hat{\mathbf{E}} \mathbf{ast}$ as a *unit vector*). The car's speed is always a real non-negative scalar denoted $|\vec{\mathbf{v}}|$ (the *magnitude* of $\vec{\mathbf{v}}$). The combination of *magnitude* and *direction* is a *vector*.

The velocity of a car with speed 5 $\frac{\text{m}}{\text{s}}$ moving West can also be written as $\vec{\mathbf{v}} = -5\,\widehat{\mathbf{E}}\mathbf{ast}$. The negative sign in $-5\,\widehat{\mathbf{E}}\mathbf{ast}$ reverses vector $\vec{\mathbf{v}}$'s direction whereas $\vec{\mathbf{v}}$'s magnitude is $|\vec{\mathbf{v}}| = |-5\,\widehat{\mathbf{E}}\mathbf{ast}| = 5\,\frac{\text{m}}{\text{s}}$.

Note: When a vector $\vec{\mathbf{v}}$ is written $\vec{\mathbf{v}} = v \, \widehat{\mathbf{E}}$ ast v is called the $\widehat{\mathbf{E}}$ ast measure of vector $\vec{\mathbf{v}}$ and is a negative, zero, or positive real scalar. The magnitude of $\vec{\mathbf{v}}$ is $|\vec{\mathbf{v}}| = abs(v)$ is inherently non-negative.

2.3 Zero vector $\vec{0}$, a vector whose magnitude is zero

Addition with $\vec{0}$	$\mathrm{any} \vec{\mathrm{V}} \mathrm{ector} \ + \ \vec{\mathrm{0}} \ = \ \mathrm{any} \vec{\mathrm{V}} \mathrm{ector}$	
Dot product with $\vec{0}$	$\mathbf{anyVector} \cdot \vec{0} = 0$	$ec{0}$ is $perpendicular$ to all vectors.
Cross product with $\vec{0}$	$ ext{anyVector} imes ilde{ extbf{0}} \stackrel{ ext{(2)}}{=} ilde{ extbf{0}}$	$ec{0}$ is $\boldsymbol{parallel}$ to all vectors.

Vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are said to be "perpendicular" if $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$ whereas $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are "parallel" if $\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \vec{\mathbf{0}}$. Some say $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are parallel if $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ have the same direction and anti-parallel if $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ have opposite directions. The direction of $\vec{\mathbf{0}}$ is arbitrary and may be regarded as having any direction, hence $\vec{\mathbf{0}}$ is perpendicular to all vectors, $\vec{\mathbf{0}}$ is parallel and anti-parallel to all vectors, and all zero vectors are equal. It is improper to say $\vec{\mathbf{0}}$ has no direction as a vector is defined to have both magnitude and direction. The zero scalar 0 has 0 magnitude and no direction, whereas the zero vector $\vec{\mathbf{0}}$ has a direction (albeit undefined).

2.4 Unit vectors: Vectors with magnitude 1 and no units (typeset with a hat)

Unit vectors are "sign posts" (e.g., unit vectors $\widehat{\mathbf{N}}$, $\widehat{\mathbf{S}}$, $\widehat{\mathbf{W}}$, $\widehat{\mathbf{E}}$ $\widehat{\mathbf{up}}$ for local Earth directions) that simplify communication and calculations. Other useful "sign posts" are: $\widehat{\mathbf{N}}$

- Unit vector directed from one point to another point
- Unit vector directed locally vertical
- Unit vector tangent to a curve or perpendicular to a surface

A unit vector can be defined so it has the same direction as an arbitrary non-zero vector $\vec{\mathbf{v}}$ by dividing $\vec{\mathbf{v}}$ by $|\vec{\mathbf{v}}|$ (the magnitude of $\vec{\mathbf{v}}$). To avoid divide-by-zero problems in numerical computation, approximate the unit vector with a "small" positive real number ϵ in the denominator.

$$\mathbf{unit}\widehat{\mathbf{V}}\mathbf{ector} = \frac{\vec{\mathbf{v}}}{|\vec{\mathbf{v}}|} \approx \frac{\vec{\mathbf{v}}}{|\vec{\mathbf{v}}| + \epsilon}$$
 (1)

2.5 Equal vectors (=) vectors with the same magnitude and direction

Shown right are three *equal vectors*. Although each has a different location, the vectors are equal because they have the same magnitude and direction.

Some vectors have additional properties. For example, a position vector has 2 associated points. Two position vectors are *equal position vectors* if they have the same magnitude, same direction, **and** same 2 associated points. Two force vectors are *equal force vectors* if they have the same magnitude, direction, **and** same point of application.

2.6 Vector addition (+)

As shown right, adding vectors $\vec{\mathbf{a}} + \vec{\mathbf{b}}$ produces a vector. First $\vec{\mathbf{b}}$ is translated so its **tail** is at the **tip** of $\vec{\mathbf{a}}$. Next, $\vec{\mathbf{a}} + \vec{\mathbf{b}}$ is drawn from the **tail** of $\vec{\mathbf{a}}$ to the **tip** of the translated $\vec{\mathbf{b}}$.

Translating $\vec{\mathbf{b}}$ does **not** change $\vec{\mathbf{b}}$'s magnitude or direction, and so produces an equal $\vec{\mathbf{b}}$.

Properties of vector addition

Commutative property: $\vec{\mathbf{a}} + \vec{\mathbf{b}} = \vec{\mathbf{b}} + \vec{\mathbf{a}}$

Associative property: $(\vec{\mathbf{a}} + \vec{\mathbf{b}}) + \vec{\mathbf{c}} = \vec{\mathbf{a}} + (\vec{\mathbf{b}} + \vec{\mathbf{c}}) = \vec{\mathbf{a}} + \vec{\mathbf{b}} + \vec{\mathbf{c}}$

Addition of zero vector: $\vec{\mathbf{a}} + \vec{\mathbf{0}} = \vec{\mathbf{a}}$

Vectors with different units do **not** add. Do **not** add a position vector (units of meters) with a force vector (units of Newtons). Note: A scalar cannot be added to a vector, e.g., $5 + \vec{\mathbf{v}}$ does not make sense.

Example: Vector addition (+)

Shown right is how to add vectors $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$, each of which is expressed in terms of orthogonal unit vectors $\hat{\mathbf{n}}_x$, $\hat{\mathbf{n}}_y$, $\hat{\mathbf{n}}_z$.

$$\begin{split} \vec{\mathbf{v}} &= 7\,\widehat{\mathbf{n}}_x + 5\,\widehat{\mathbf{n}}_y + 4\,\widehat{\mathbf{n}}_z \\ - \,\vec{\mathbf{w}} &= 2\,\widehat{\mathbf{n}}_x + 3\,\widehat{\mathbf{n}}_y + 2\,\widehat{\mathbf{n}}_z \\ \vec{\mathbf{v}} + \vec{\mathbf{w}} &= 9\,\widehat{\mathbf{n}}_x + 8\,\widehat{\mathbf{n}}_y + 6\,\widehat{\mathbf{n}}_z \end{split}$$

 $\vec{\mathbf{v}} = \underbrace{x \, \hat{\mathbf{n}}_{\mathrm{x}}}_{\mathbf{vector}} + \underbrace{y \, \hat{\mathbf{n}}_{\mathrm{y}}}_{\mathbf{vector}}$ component component

Special names for parts x is called the $\hat{\mathbf{n}}_x$ measure (or scalar component) of $\vec{\mathbf{v}}$. of the generic vector $\vec{\mathbf{v}}$. y is called the $\hat{\mathbf{n}}_y$ measure (or scalar component) of $\vec{\mathbf{v}}$.

2.7 Vector multiplied or divided by a scalar (* or /)

• Multiplying a vector by a **positive** number (other than 1) changes the vector's magnitude.

• Multiplying a vector by a **negative** number changes the vector's magnitude **and** reverses the **sense** of the vector.

• Dividing a vector $\vec{\mathbf{a}}$ by a scalar s is defined as $\frac{\vec{\mathbf{a}}}{s} \triangleq \frac{1}{s} * \vec{\mathbf{a}}$.

Commutative property: $s_1 \vec{\mathbf{a}} = \vec{\mathbf{a}} s_1$

Associative property: $s_1(s_2 \vec{\mathbf{a}}) = (s_1 s_2) \vec{\mathbf{a}} = s_2(s_1 \vec{\mathbf{a}}) = s_1 s_2 \vec{\mathbf{a}}$

Distributive property: $(s_1 + s_2)\vec{\mathbf{a}} = s_1\vec{\mathbf{a}} + s_2\vec{\mathbf{a}}$ $s_1(\vec{\mathbf{a}} + \vec{\mathbf{b}}) = s_1\vec{\mathbf{a}} + s_1\vec{\mathbf{b}}$

Multiplication by zero: $0 * \vec{a} = \vec{0}$

Given:
$$\vec{\mathbf{v}} = 7\,\hat{\mathbf{n}}_x + 5\,\hat{\mathbf{n}}_y + 4\,\hat{\mathbf{n}}_z$$

then: $5\,\vec{\mathbf{v}} = 35\,\hat{\mathbf{n}}_x + 25\,\hat{\mathbf{n}}_y + 20\,\hat{\mathbf{n}}_z$ and $\frac{-\vec{\mathbf{v}}}{2} = -3.5\,\hat{\mathbf{n}}_x - 2.5\,\hat{\mathbf{n}}_y - 2\,\hat{\mathbf{n}}_z$

2.8 Vector negation and subtraction (–)

Negation: As shown right, negating a vector (multiplying by -1) reverses the vector's **sense** (it points in the opposite direction). Negation does not change the vector's magnitude or orientation.

9

Subtraction: As the drawing to the right shows, subtracting a vector $\vec{\mathbf{b}}$ from a vector $\vec{\mathbf{a}}$ is simply addition and negation.

$$ec{\mathbf{a}} - ec{\mathbf{b}} \, \triangleq \, ec{\mathbf{a}} \, + - ec{\mathbf{b}}$$

Note: In most/all mathematics, subtraction is defined as negation and addition.

After negating vector $\vec{\mathbf{b}}$, it is translated so the tail of $-\vec{\mathbf{b}}$ is at the tip of $\vec{\mathbf{a}}$. Next, vector $\vec{\mathbf{a}} + -\vec{\mathbf{b}}$ is drawn from the tail of $\vec{\mathbf{a}}$ to the tip of the translated $-\vec{\mathbf{b}}$.

It is easy to subtract vectors that are expressed in terms of orthogonal unit vectors $\hat{\mathbf{n}}_{x}$, $\hat{\mathbf{n}}_{y}$, $\hat{\mathbf{n}}_{z}$.

$$\begin{split} \vec{\mathbf{v}} &= 7\,\widehat{\mathbf{n}}_{x} + 5\,\widehat{\mathbf{n}}_{y} + 4\,\widehat{\mathbf{n}}_{z} \\ \vec{\mathbf{w}} &= 2\,\widehat{\mathbf{n}}_{x} + 3\,\widehat{\mathbf{n}}_{y} + 2\,\widehat{\mathbf{n}}_{z} \\ \vec{\mathbf{v}} - \vec{\mathbf{w}} &= 5\,\widehat{\mathbf{n}}_{x} + 2\,\widehat{\mathbf{n}}_{y} + 2\,\widehat{\mathbf{n}}_{z} \end{split}$$

2.9 Vector dot product (•)

Equation (2) defines the **dot product** of vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$.

- $|\vec{\mathbf{a}}|$ and $|\vec{\mathbf{b}}|$ are the magnitudes of $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$, respectively.
- θ is the smallest angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ $(0 \le \theta \le \pi)$ To visualize θ , draw $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ as tail-to-tail.

Equation (3) is a rearrangement of equation (2) that is useful for calculating the angle θ between two vectors. Note: $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are "perpendicular" when $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$.

Note: Dot-products encapsulate the *law of cosines*.

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \triangleq |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \cos(\theta)$$
 (2)

$$\cos(\theta) = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}$$
 (3)

Use **acos** to calculate θ .

Equation (2) shows $\vec{\mathbf{v}} \cdot \vec{\mathbf{v}} = |\vec{\mathbf{v}}|^2$. Hence, the dot product can calculate a vector's **magnitude** as shown for $|\vec{\mathbf{v}}|$ in equation (4).

Equation (4) also defines **vector exponentiation** $\vec{\mathbf{v}}^n$ (vector $\vec{\mathbf{v}}$ raised to scalar power n) as a non-negative scalar.

Example: Kinetic energy $K = \frac{1}{2} m \vec{\mathbf{v}}^2 = \frac{1}{2} m \vec{\mathbf{v}} \cdot \vec{\mathbf{v}}$

2.9.1 Properties of the dot-product (\cdot)

 $\vec{\mathbf{a}} \cdot \vec{\mathbf{0}} = 0$ Dot product with a zero vector $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$ if $\vec{\mathbf{a}} \perp \vec{\mathbf{b}}$ Dot product of **perpendicular** vectors $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = \pm |\vec{\mathbf{a}}| |\vec{\mathbf{b}}|$ if $\vec{\mathbf{a}} \parallel \vec{\mathbf{b}}$ Dot product of parallel vectors $s_1 \vec{\mathbf{a}} \cdot s_2 \vec{\mathbf{b}} = s_1 s_2 (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})$ Dot product with vectors scaled by s_1 and s_2 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$ Commutative property $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$ Distributive property $(\vec{a} + \vec{b}) \cdot (\vec{c} + \vec{d}) = \vec{a} \cdot \vec{c} + \vec{a} \cdot \vec{d} + \vec{b} \cdot \vec{c} + \vec{b} \cdot \vec{d}$ Distributive property

Note: The distributive property for dot-products and cross-products is proved in [34, pgs. 23-24, 32-34].

2.9.2 Uses for the dot-product (·)

- \bullet Determining the angle between two vectors [see equation (3) and example in Section 3.3].
- Determining when two vectors are *perpendicular*, e.g., $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$.
- ullet Calculating a vector's magnitude [see equation (4) and distance examples in Sections 3.1 and 3.3].
- \bullet Changing a \boldsymbol{vector} $\boldsymbol{equation}$ into a \boldsymbol{scalar} $\boldsymbol{equation}$ (see Hw 2.29).
- Calculating a *unit vector* in the direction of a vector $\vec{\mathbf{v}}$ [from equation (1)] **Projection** of a vector $\vec{\mathbf{v}}$ in the direction of $\vec{\mathbf{b}}$, defined as:

 $ec{ ext{v}} \cdot rac{ec{ ext{b}}}{|ec{ ext{b}}|}$

See Section 4.2 for projections, measures, coefficients, components.
See Section 3.3 for a distance measure from a point to a plane.

2.9.3 Dot-products to change vector equations to scalar equations (see Hw 1.29)

One way to form up to three linearly independent scalar equations from the vector equation $\vec{\mathbf{v}} = \vec{\mathbf{0}}$ is by dot-multiplying $\vec{\mathbf{v}} = \vec{\mathbf{0}}$ with three orthogonal unit vectors $\hat{\mathbf{a}}_1$, $\hat{\mathbf{a}}_2$, $\hat{\mathbf{a}}_3$, i.e.,

 $\vec{\mathbf{v}} \cdot \hat{\mathbf{a}}_2 = 0$

$$\vec{\mathbf{v}} \cdot \hat{\mathbf{a}}_3 = 0$$

2.9.4 Special case: Dot-products with orthogonal unit vectors

When $\widehat{\bf n}_x,\; \widehat{\bf n}_y,\; \widehat{\bf n}_z$ are orthogonal unit vectors, it can be shown (see Hw 2.4)

$$(a_x \, \widehat{\mathbf{n}}_{\mathbf{x}} \, + \, a_y \, \widehat{\mathbf{n}}_{\mathbf{y}} \, + \, a_z \, \widehat{\mathbf{n}}_{\mathbf{z}}) \, \cdot \, (b_x \, \widehat{\mathbf{n}}_{\mathbf{x}} \, + \, b_y \, \widehat{\mathbf{n}}_{\mathbf{y}} \, + \, b_z \, \widehat{\mathbf{n}}_{\mathbf{z}}) \quad = \quad a_x \, b_x \, + \, a_y \, b_y \, + \, a_z \, b_z$$

Examples: Vector dot-products (•) 2.9.5

Shown below is how to use dot-products when vectors $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$ $\vec{\mathbf{v}} = 7 \, \hat{\mathbf{n}}_x + 5 \, \hat{\mathbf{n}}_y + 4 \, \hat{\mathbf{n}}_z$ are expressed in terms of orthogonal unit vectors $\hat{\mathbf{n}}_x$, $\hat{\mathbf{n}}_y$, $\hat{\mathbf{n}}_z$. $\vec{\mathbf{w}} = 2 \, \hat{\mathbf{n}}_x + 3 \, \hat{\mathbf{n}}_y + 2 \, \hat{\mathbf{n}}_z$

$\widehat{\mathbf{n}}_{\mathbf{x}}$ measure of $\vec{\mathbf{v}}$	$\vec{\mathbf{v}} \cdot \hat{\mathbf{n}}_{x} = 7$ (measures how much of $\vec{\mathbf{v}}$ is in the $\hat{\mathbf{n}}_{x}$ direction).
$\vec{\mathbf{v}} \cdot \vec{\mathbf{v}} = 7^2 + 5^2 + 4^2 = 90$	$ \vec{\mathbf{v}} = \sqrt{90} \approx 9.4868$
$\vec{\mathbf{w}} \cdot \vec{\mathbf{w}} = 2^2 + 3^2 + 2^2 = 17$	$ \vec{\mathbf{w}} = \sqrt{17} \approx 4.1231$
Unit vector in the direction of $\vec{\mathbf{v}}$:	$\frac{\vec{\mathbf{v}}}{ \vec{\mathbf{v}} } = \frac{7\hat{\mathbf{n}}_{x} + 5\hat{\mathbf{n}}_{y} + 4\hat{\mathbf{n}}_{z}}{\sqrt{90}} \approx 0.738\hat{\mathbf{n}}_{x} + 0.527\hat{\mathbf{n}}_{y} + 0.422\hat{\mathbf{n}}_{z}$
Unit vector in the direction of $\vec{\mathbf{w}}$:	$\frac{\vec{\mathbf{w}}}{ \vec{\mathbf{w}} } = \frac{2\hat{\mathbf{n}}_{x} + 3\hat{\mathbf{n}}_{y} + 2\hat{\mathbf{n}}_{z}}{\sqrt{17}} \approx 0.485\hat{\mathbf{n}}_{x} + 0.728\hat{\mathbf{n}}_{y} + 0.485\hat{\mathbf{n}}_{z}$
$\vec{\mathbf{v}} \cdot \vec{\mathbf{w}} = 7 * 2 + 5 * 3 + 4 * 2 = 37$	$\angle(\vec{\mathbf{v}}, \vec{\mathbf{w}}) = \cos(\frac{37}{\sqrt{90}\sqrt{17}}) \approx 0.33 \text{ rad } \approx 18.93^{\circ}$

Vector cross product (\times) 2.10

The **cross product** of a vector $\vec{\mathbf{a}}$ with a vector $\vec{\mathbf{b}}$ is defined in equation (5).

- $|\vec{\mathbf{a}}|$ and $|\vec{\mathbf{b}}|$ are the magnitudes of $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$, respectively
- θ is the smallest angle between $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ (0 < θ < π). To visualize θ , draw $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ as tail-to-tail.
- $\hat{\mathbf{u}}$ is the unit vector **perpendicular** to both $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$. The direction of $\hat{\mathbf{u}}$ is determined by the **right-hand rule**. The right-hand rule is a convention like driving on the right-hand side of the road.

Note: $|\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sin(\theta)$ [the coefficient of $\hat{\mathbf{u}}$ in equation (5)] is inherently nonnegative because $\sin(\theta) \ge 0$ since $0 \le \theta \le \pi$. Hence, $|\vec{\mathbf{a}} \times \vec{\mathbf{b}}| = |\vec{\mathbf{a}}| |\vec{\mathbf{b}}| \sin(\theta)$.

Properties of the cross-product (\times)

Cross product with a zero vector Cross product of a vector with itself Cross product of *parallel* vectors

Cross product of scaled vectors

Cross products are **not** associative

Cross products are **not** commutative.

 $\vec{\mathbf{a}} \times \vec{\mathbf{0}} = \vec{\mathbf{0}}$ $\vec{a} \times \vec{a} = \vec{0}$ $\vec{a} \times \vec{b} = \vec{0}$ if $\vec{\mathbf{a}} \parallel \vec{\mathbf{b}}$ $s_1 \, \vec{\mathbf{a}} \, \times \, s_2 \, \vec{\mathbf{b}} \, = \, s_1 \, s_2 \, (\vec{\mathbf{a}} \, \times \, \vec{\mathbf{b}})$ $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ Distributive property $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) \neq (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}}$

$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = -\vec{\mathbf{b}} \times \vec{\mathbf{a}}$$
 (6)

Vector triple cross product (bac-cab).

$$\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = \vec{\mathbf{b}} (\vec{\mathbf{a}} \cdot \vec{\mathbf{c}}) - \vec{\mathbf{c}} (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})$$
 (7)

A mnemonic for eqn (7) is "back cab" - as in were you born in the back of a cab? Many proofs of this formula resolve \vec{a} , \vec{b} , \vec{c} into orthogonal unit vectors (e.g., \hat{n}_x , \hat{n}_v , \hat{n}_z) and equate components.

Uses for the cross-product (\times) in geometry, statics, motion analysis, ... 2.10.1

- *Moment* of a force such as $\vec{\mathbf{r}} \times \vec{\mathbf{F}}$ (details in Section 17.1).
- Velocity/acceleration formulas [see eqns (8.3, 8.4)] $\vec{\mathbf{v}} = \vec{\boldsymbol{\omega}} \times \vec{\mathbf{r}}$ and $\vec{\mathbf{a}} = \vec{\boldsymbol{\alpha}} \times \vec{\mathbf{r}} + \vec{\boldsymbol{\omega}} \times (\vec{\boldsymbol{\omega}} \times \vec{\mathbf{r}})$.
- **Perpendicular** vectors, e.g., $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$ is perpendicular to both $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$.
- **Area of a triangle** with sides $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ (see Sections 3.2, 3.3 and Hw 2.13). $\vec{\Delta}(\vec{\mathbf{a}}, \vec{\mathbf{b}}) = \frac{1}{2}\vec{\mathbf{a}} \times \vec{\mathbf{b}}$.

2.10.2 Determinants and cross-products (with right-handed unit vectors)

When vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ are expressed in terms of **orthogonal unit** vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, $\hat{\mathbf{k}}$, it can be shown (Hw 2.12) that $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$ happens to equal the *determinant* of an associated matrix.

$$\vec{\mathbf{a}} = a_x \hat{\mathbf{i}} + a_y \hat{\mathbf{j}} + a_z \hat{\mathbf{k}}$$

$$\vec{\mathbf{b}} = b_x \hat{\mathbf{i}} + b_y \hat{\mathbf{j}} + b_z \hat{\mathbf{k}}$$

$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \det \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{bmatrix} = \begin{pmatrix} (a_y b_z - a_z b_y) \hat{\mathbf{i}} \\ - (a_x b_z - a_z b_x) \hat{\mathbf{j}} \\ + (a_x b_y - a_y b_x) \hat{\mathbf{k}} \end{pmatrix}$$
(8)

Examples: Vector cross-products (\times) with determinants.

The following shows how to use cross-products with the vectors $\vec{\mathbf{v}}$ and $\vec{\mathbf{w}}$, each which is expressed in terms of the orthogonal unit vectors $\hat{\mathbf{n}}_x$, $\hat{\mathbf{n}}_y$, $\hat{\mathbf{n}}_z$ shown to the right.

$$\vec{\mathbf{v}} = 7\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + 4\hat{\mathbf{k}}$$

$$\vec{\mathbf{w}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}}$$

$$\vec{\mathbf{v}} \times \vec{\mathbf{w}} = \det \begin{bmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ 7 & 5 & 4 \\ 2 & 3 & 2 \end{bmatrix} = -2\hat{\mathbf{i}} - 6\hat{\mathbf{j}} + 11\hat{\mathbf{k}}$$

Scalar triple product:
$$(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 4\hat{\mathbf{k}}) \cdot (\vec{\mathbf{v}} \times \vec{\mathbf{w}}) = \det \begin{bmatrix} 2 & 3 & 4 \\ 7 & 5 & 4 \\ 2 & 3 & 2 \end{bmatrix} = 22$$

2.11 Optional: Scalar triple product $(\cdot \times \text{ or } \times \cdot)$

The **scalar triple product** of vectors $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ is the scalar defined in the various ways shown below.

Scalar Triple Product
$$\triangleq \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \vec{\mathbf{a}} \times \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} \times \vec{\mathbf{a}} = \vec{\mathbf{b}} \times \vec{\mathbf{c}} \cdot \vec{\mathbf{a}}$$
 (9)

Although parentheses clarify eqn (9) e.g., $\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}})$ instead of $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \times \vec{\mathbf{c}}$, the parentheses are unnecessary because the cross product $\vec{\mathbf{b}} \times \vec{\mathbf{c}}$ must be performed before the dot product (for a sensible result to be produced). Note: $\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{a}}) = 0$ since [by eqn (5)] $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$ is \mathbf{L} to both $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ and the dot-product of $\vec{\mathbf{a}}$ with a vector \mathbf{L} to $\vec{\mathbf{a}}$ is 0.

2.11.1 Scalar triple product and the volume of a tetrahedron

For a tetrahedron whose sides are described by the vectors $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$ (sides of length $|\vec{\mathbf{a}}|$, $|\vec{\mathbf{b}}|$, $|\vec{\mathbf{c}}|$), a geometrical interpretation of $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \times \vec{\mathbf{c}}$ is the *volume of the parallelepiped*. This formula

helps calculate mass and volume of generic 3D shapes (e.g., for highway cut/fill calculations and CAD solid modeling). A tetrahedron's volume is calculated in Section 3.3.

Tetrahedron Volume =
$$\frac{1}{6} \vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \times \vec{\mathbf{c}} = \frac{1}{6} \vec{\mathbf{a}} \times \vec{\mathbf{b}} \cdot \vec{\mathbf{c}} = \frac{1}{3} \vec{\Delta} (\vec{\mathbf{a}}, \vec{\mathbf{b}}) \cdot \vec{\mathbf{c}}$$
 (10)

2.11.2 $(\times \cdot)$ to change vector equations to scalar equations (see Hw 1.29)

Section 2.9.3 showed one method to form scalar equations from the vector equation $\vec{\mathbf{v}} = \vec{\mathbf{0}}$. A 2^{nd} method expresses $\vec{\mathbf{v}}$ in terms of three non-coplanar (but not necessarily orthogonal or unit) vectors $\vec{\mathbf{a}}_1$, $\vec{\mathbf{a}}_2$, $\vec{\mathbf{a}}_3$, and writes the equally valid (but generally different) set of linearly independent scalar equations shown below [proved by directly by substituting $\vec{\mathbf{v}} = \vec{\mathbf{0}}$ into eqn (4.2)].

Method 2: if
$$\vec{\mathbf{v}} = v_1 \vec{\mathbf{a}}_1 + v_2 \vec{\mathbf{a}}_2 + v_3 \vec{\mathbf{a}}_3 = \vec{\mathbf{0}} \Rightarrow v_1 = 0 \qquad v_2 = 0 \qquad v_3 = 0$$

Courtesy Accuray Inc. Vectors are widely useful, e.g., in medical robotics, cut/fill calculations for highway & railway construction, ...