
Chapter 2

Vectors (� �a +�b -�b ∠∠∠∠∠∠∠∠∠∠∠∠∠(�a, �b) �a ·············�b �a×�b)

Examples in Hw 1, 2, 3

In 1881-1903, Gibbs developed vectors as a useful combination of magnitude and direction. Vectors are
a very important geometrical tool (for surveying, motion, optics, graphics, CAD, FEA, etc.).
Symbol Description Details
�0, û Zero vector �0 and unit vectors. Sections 2.3, 2.4
+ − ∗ / Vector addition, negation, subtraction, Sections 2.6 - 2.8

and scalar multiplication/division.
············· × Vector dot product and cross product. Sections 2.9, 2.10
Fd
dt

Vector differentiation. Chapters 6, 7

2.1 Examples of scalars vectors and dyadics

• A scalar is a number, possibly with units (e.g., 7 m
s or 9 kg), such as

time density volume mass potential energy work
distance speed angle weight kinetic energy temperature

• A vector is a quantity with magnitude and one associated direction (e.g., 7 ûp). For example, a
velocity vector has speed (how fast something moves) and direction (which way it is going). A force vector
has magnitude (how hard something is pushed) and direction (which way it is shoved). Examples include:
force velocity acceleration translational momentum

torque angular velocity angular acceleration angular momentum
In 1884, Gibbs re-defined vectors
and taught them with 90 lectures.

• A dyad is a quantity with magnitude and two associated directions (e.g., 8 î ĵ). For example, stress
associates with area and force (both regarded as vectors). A dyadic is the sum of dyads (Chapter 13), e.g.,
an inertia dyadic (Chapter 14) is the sum of dyads associated with moments and products of inertia.

2.2 Definition of a vector
A vector is defined as a quantity having magnitude and direction.a

Vectors are represented pictorially with straight or curved arrows (examples below).
Vectors are typeset with bold font and an �arrow or ĥat (e.g., �v denotes a vector).

right / left                                up / down                        out-from / into page               inclined at 45o

Certain vectors have additional properties, e.g., a position vector �r has two associated
points and units of length (e.g., meters) and a unit vector has magnitude 1 (no units).

Courtesy Bro. Claude
Rheaume. LaSalette.

aA vector’s magnitude is a real non-negative scalar (e.g., 7 m/s). A vector’s direction is its orientation and
sense. A vector is similar to a ray in direction, but a vector has finite magnitude. A vector is similar to a
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line segment in magnitude and orientation, but a vector also has a sense (a fully defined direction).

Example of a vector: Consider the statement “the car is moving East at 5 m
s ”.

It is convenient to represent the car’s speed and direction with the velocity vector
�v = 5 Êast (a hat designates the direction Êast as a unit vector). The car’s speed
is always a real non-negative scalar denoted

∣∣�v∣∣ (the magnitude of �v). The
combination of magnitude and direction is a vector.

N

S

EW

m
s5

The velocity of a car with speed 5 m
s moving West can also be written as �v = -5 Êast. The negative sign

in -5 Êast reverses vector �v’s direction whereas �v’s magnitude is
∣∣�v∣∣ =

∣∣-5 Êast
∣∣ = 5 m

s .
Note: When a vector �v is written �v = v Êast v is called the Êast measure of vector �v and is a negative, zero,
or positive real scalar. The magnitude of �v is

∣∣�v∣∣ = abs(v) is inherently non-negative.

2.3 Zero vector �0, a vector whose magnitude is zero

Addition with �0 any�Vector + �0 = any�Vector

Dot product with �0 any�Vector ············· �0 =
(2)

0 �0 is perpendicular to all vectors.

Cross product with �0 any�Vector × �0 =
(5)

�0 �0 is parallel to all vectors.

Vectors �a and �b are said to be “perpendicular” if �a ············· �b = 0 whereas �a and �b are “parallel” if �a × �b = �0.
Some say �a and �b are parallel if �a and �b have the same direction and anti-parallel if �a and �b have opposite directions.
The direction of �0 is arbitrary and may be regarded as having any direction, hence �0 is perpendicular to all vectors, �0 is

parallel and anti-parallel to all vectors, and all zero vectors are equal. It is improper to say �0 has no direction as a vector

is defined to have both magnitude and direction. The zero scalar 0 has 0 magnitude and no direction, whereas the zero

vector �0 has a direction (albeit undefined).

2.4 Unit v̂ectors: Vectors with magnitude 1 and no units (typeset with a �hat)

Unit vectors are “sign posts” (e.g., unit vectors N̂, Ŝ, Ŵ, Ê ûp for local Earth directions)
that simplify communication and calculations. Other useful “sign posts” are:

• Unit vector directed from one point to another point
• Unit vector directed locally vertical
• Unit vector tangent to a curve or perpendicular to a surface

N

S

EW
West                East

North

South

A unit vector can be defined so it has the same direction as an
arbitrary non-zero vector �v by dividing �v by |�v| (the magnitude of �v).
To avoid divide-by-zero problems in numerical computation, approximate
the unit vector with a “small” positive real number ε in the denominator.

unitV̂ector =
�v
|�v| ≈ �v

|�v| + ε
(1)

2.5 Equal vectors ( = ) vectors with the same magnitude and direction

Shown right are three equal vectors. Although each has a different location, the
vectors are equal because they have the same magnitude and direction.

Some vectors have additional properties. For example, a position vector has 2 associated points. Two position vectors
are equal position vectors if they have the same magnitude, same direction, and same 2 associated points. Two
force vectors are equal force vectors if they have the same magnitude, direction, and same point of application.
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2.6 Vector addition ( + )

As shown right, adding vectors �a +�b produces a vector. First �b is translated so its tail
is at the tip of �a. Next, �a+�b is drawn from the tail of �a to the tip of the translated �b.

Translating �b does not change �b’s magnitude or direction, and so produces an equal �b.

Properties of vector addition
Commutative property: �a + �b = �b + �a
Associative property: (�a + �b ) + �c = �a + (�b + �c) = �a + �b + �c
Addition of zero vector: �a + �0 = �a

b

a tip

tiptail

tail

a
a + b

btip-to-tail

Vectors with different units do not add. Do not add a position vector (units of meters) with a force vector (units of
Newtons). Note: A scalar cannot be added to a vector, e.g., 5 +�v does not make sense.

Example: Vector addition ( + )
Shown right is how to add vectors �v and �w, each of which
is expressed in terms of orthogonal unit vectors n̂x, n̂y, n̂z.

�v = 7 n̂x + 5 n̂y + 4 n̂z

− �w = 2 n̂x + 3 n̂y + 2 n̂z

�v + �w = 9 n̂x + 8 n̂y + 6 n̂z
nz

ny
nx

�v = x n̂x︸︷︷︸
vector

component

+ y n̂y︸︷︷︸
vector
component

Special names for parts
of the generic vector �v.

x is called the n̂x measure (or scalar component) of �v.
y is called the n̂y measure (or scalar component) of �v.

2.7 Vector multiplied or divided by a scalar ( ∗ or /)

• Multiplying a vector by a positive number (other than 1) changes the vector’s magnitude.
• Multiplying a vector by a negative number changes the vector’s magnitude and

reverses the sense of the vector.
• Dividing a vector �a by a scalar s is defined as �a

s � 1
s ∗�a.

Properties of multiplication of a vector by a scalar s1 or s2

Commutative property: s1�a = �a s1

Associative property: s1 ( s2�a ) = ( s1 s2 )�a = s2 ( s1�a ) = s1 s2�a

Distributive property: (s1 + s2)�a = s1�a + s2�a s1 (�a +�b ) = s1�a + s1
�b

Multiplication by zero: 0 ∗�a = �0

a
2a

-2a

a

Example: Vector scalar multiplication and division ( ∗ and /)
Given: �v = 7 n̂x + 5 n̂y + 4 n̂z

then: 5�v = 35 n̂x + 25 n̂y + 20 n̂z
and

-�v
2 = -3.5 n̂x − 2.5 n̂y − 2 n̂z nz

ny
nx

2.8 Vector negation and subtraction (− )

Negation: As shown right, negating a vector (multiplying by -1) reverses the vector’s sense (it
points in the opposite direction). Negation does not change the vector’s magnitude or orientation. -a

a

Subtraction: As the drawing to the right shows, subtracting
a vector �b from a vector �a is simply addition and negation. �a −�b � �a + -�b

Note: In most/all mathematics, subtraction is defined as negation and addition.

After negating vector �b, it is translated so the tail of -�b is at the tip of �a.
Next, vector �a + -�b is drawn from the tail of �a to the tip of the translated -�b.

Example: Vector subtraction (�v − �w)
It is easy to subtract vectors that are expressed in
terms of orthogonal unit vectors n̂x, n̂y, n̂z.

�v = 7 n̂x + 5 n̂y + 4 n̂z

�w = 2 n̂x + 3 n̂y + 2 n̂z

�v − �w = 5 n̂x + 2 n̂y + 2 n̂z

b

a

 a +  -b  a

tip-to-tail-b
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2.9 Vector dot product ( ············· )
Equation (2) defines the dot product of vectors �a and �b.

• |�a| and |�b| are the magnitudes of �a and �b, respectively.
• θ is the smallest angle between �a and �b (0 ≤ θ ≤ π)

To visualize θ, draw �a and �b as tail-to-tail.

Equation (3) is a rearrangement of equation (2) that is
useful for calculating the angle θ between two vectors.
Note: �a and �b are “perpendicular” when �a ············· �b = 0.
Note: Dot-products encapsulate the law of cosines.

b

aθ
|a|

| b| �a ·············�b � |�a| |�b| cos(θ) (2)

cos(θ) =
(2)

�a ············· �b

|�a| |�b|
(3)

Use acosacosacosacosacosacosacosacosacosacosacosacosacos to calculate θ.

Equation (2) shows �v ············· �v = |�v|2. Hence, the dot product can
calculate a vector’s magnitude as shown for |�v| in equation (4).

Equation (4) also defines vector exponentiation �vn

(vector �v raised to scalar power n) as a non-negative scalar.

Example: Kinetic energy K = 1
2 m�v2 =

(4)

1
2 m�v ············· �v

�v2 � |�v|2 = �v ············· �v

|�v| = +
√

�v ·············�v
�v n � |�v|n = +(�v ············· �v)

n
2

(4)

2.9.1 Properties of the dot-product ( ············· )
Dot product with a zero vector �a ············· �0 = 0

Dot product of perpendicular vectors �a ············· �b = 0 if �a ⊥ �b

Dot product of parallel vectors �a ············· �b = ± |�a| |�b| if �a ‖ �b

Dot product with vectors scaled by s1 and s2 s1�a ············· s2
�b = s1 s2 (�a ············· �b )

Commutative property �a ············· �b = �b ············· �a
Distributive property �a ············· (�b +�c ) = �a ············· �b + �a ·············�c
Distributive property (�a +�b ) ············· (�c +�d ) = �a ·············�c + �a ·············�d + �b ·············�c + �b ·············�d

Note: The distributive property for dot-products and cross-products is proved in [34, pgs. 23-24, 32-34].

2.9.2 Uses for the dot-product ( ············· )
• Determining the angle between two vectors [see equation (3) and example in Section 3.3].
• Determining when two vectors are perpendicular, e.g., �a ············· �b = 0.
• Calculating a vector’s magnitude [see equation (4) and distance examples in Sections 3.1 and 3.3].
• Changing a vector equation into a scalar equation (see Hw 2.29).

• Calculating a unit vector in the direction of a vector �v [from equation (1)] �unitVector =
(1)

�v
|�v|

•
Projection of a vector �v in the direction of �b, defined as:
See Section 4.2 for projections, measures, coefficients, components.
See Section 3.3 for a distance measure from a point to a plane.

�v ············· �b
|�b|

2.9.3 Dot-products to change vector equations to scalar equations (see Hw 1.29)

One way to form up to three linearly independent scalar equations from the vector equation
�v = �0 is by dot-multiplying �v = �0 with three orthogonal unit vectors â1, â2, â3, i.e.,

if �v = �0 ⇒ �v ············· â1 = 0 �v ············· â2 = 0 �v ············· â3 = 0
a1

a2

a3

2.9.4 Special case: Dot-products with orthogonal unit vectors

When n̂x, n̂y, n̂z are orthogonal unit vectors, it can be shown (see Hw 2.4)

(ax n̂x + ay n̂y + az n̂z) ············· (bx n̂x + by n̂y + bz n̂z) = ax bx + ay by + az bz nz

ny
nx
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2.9.5 Examples: Vector dot-products ( ············· )
Shown below is how to use dot-products when vectors �v and �w
are expressed in terms of orthogonal unit vectors n̂x, n̂y, n̂z.

�v = 7 n̂x + 5 n̂y + 4 n̂z

�w = 2 n̂x + 3 n̂y + 2 n̂z
nz

ny
nx

n̂x measure of �v �v ············· n̂x = 7 (measures how much of �v is in the n̂x direction).
�v ············· �v = 72 + 52 + 42 = 90 |�v| =

√
90 ≈ 9.4868

�w ············· �w = 22 + 32 + 22 = 17 |�w| =
√

17 ≈ 4.1231

Unit vector in the direction of �v:
�v
|�v| =

7 n̂x + 5 n̂y + 4 n̂z√
90

≈ 0.738 n̂x + 0.527 n̂y + 0.422 n̂z

Unit vector in the direction of �w:
�w
|�w| =

2 n̂x + 3 n̂y + 2 n̂z√
17

≈ 0.485 n̂x + 0.728 n̂y + 0.485 n̂z

�v ············· �w = 7 ∗ 2 + 5 ∗ 3 + 4 ∗ 2 = 37 ∠∠∠∠∠∠∠∠∠∠∠∠∠(�v, �w) = acos
(

37√
90

√
17

) ≈ 0.33 rad ≈ 18.93◦

2.10 Vector cross product (× )

The cross product of a vector�a with a vector �b is defined in equation (5).

• |�a| and |�b| are the magnitudes of �a and �b, respectively
• θ is the smallest angle between �a and �b (0 ≤ θ ≤ π).

To visualize θ, draw �a and �b as tail-to-tail.
• û is the unit vector perpendicular to both �a and �b.

The direction of û is determined by the right-hand rule.
The right-hand rule is a convention like driving on the right-hand side of the
road.
Note: |�a| |�b| sin(θ) [the coefficient of û in equation (5)] is inherently non-
negative because sin(θ) ≥ 0 since 0 ≤ θ ≤ π. Hence, |�a×�b| = |�a| |�b| sin(θ).

b

aθ
|a|

u

| b|

�a × �b � |�a| |�b| sin(θ) û (5)

�a ×�b is ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ to both �a and �b.

Properties of the cross-product (× )
Cross product with a zero vector �a × �0 = �0
Cross product of a vector with itself �a × �a = �0

Cross product of parallel vectors �a × �b = �0 if �a ‖ �b
Cross product of scaled vectors s1�a × s2

�b = s1 s2 (�a × �b)
Distributive property �a × (�b +�c) = �a × �b + �a × �c

Cross products are not associative �a × (
�b ×�c

) 	= (
�a × �b

) ×�c
Cross products are not commutative. �a × �b = -�b × �a (6)

Vector triple cross product (bac-cab). �a × (
�b ×�c

)
= �b

(
�a ·············�c) − �c

(
�a ············· �b)

(7)

A mnemonic for eqn(7) is “back cab” - as in were you born in the back of a cab? Many proofs of this formula
resolve �a, �b, �c into orthogonal unit vectors (e.g., n̂x, n̂y, n̂z) and equate components.

2.10.1 Uses for the cross-product (×) in geometry, statics, motion analysis, . . .

• Moment of a force such as �r × �F (details in Section 17.1).

• Velocity/acceleration formulas [see eqns (8.3, 8.4)] �v = �ωωωωωωωωωωωωω ×�r and �a = �ααααααααααααα ×�r + �ωωωωωωωωωωωωω × (�ωωωωωωωωωωωωω ×�r).

• Perpendicular vectors, e.g., �a ×�b is perpendicular to both �a and �b.

• Area of a triangle with sides �a and �b (see Sections 3.2, 3.3 and Hw 2.13). �∆(�a, �b) = 1
2�a ×�b.
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2.10.2 Determinants and cross-products (with right-handed unit vectors)

When vectors �a and �b are expressed in terms of orthogonal unit vectors î, ĵ, k̂, it can be
shown (Hw 2.12) that �a × �b happens to equal the determinant of an associated matrix.

�a = ax î + ay ĵ + az k̂
�b = bx î + by ĵ + bz k̂

}
�a × �b = det

 î ĵ k̂
ax ay az

bx by bz

 =
(ay bz − az by) î

− (ax bz − az bx) ĵ
+ (ax by − ay bx) k̂

(8)

Examples: Vector cross-products (×) with determinants.
The following shows how to use cross-products with the vectors �v and �w, each which is
expressed in terms of the orthogonal unit vectors n̂x, n̂y, n̂z shown to the right.

�v = 7 î + 5 ĵ + 4 k̂
�w = 2 î + 3 ĵ + 2 k̂

}
�v × �w = det

 î ĵ k̂
7 5 4
2 3 2

 = -2 î − 6 ĵ + 11 k̂

Scalar triple product: (2 î + 3 ĵ + 4 k̂) ············· (�v × �w) = det

[
2 3 4
7 5 4
2 3 2

]
= 22

2.11 Optional: Scalar triple product ( ············· × or × ············· )
The scalar triple product of vectors �a, �b, �c is the scalar defined in the various ways shown below.

ScalarTripleProduct � �a ············· �b ×�c = �a ×�b ············· �c = �b ············· �c ×�a = �b×�c ············· �a (9)

Although parentheses clarify eqn(9) e.g., �a ············· (�b×�c) instead of �a ·············�b×�c, the parentheses are unnecessary because
the cross product �b ×�c must be performed before the dot product (for a sensible result to be produced).
Note: �a ············· (�b×�a) = 0 since [by eqn(5)] �a ×�b is ⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ to both �a and �b and the dot-product of �a with a vector⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥⊥ to �a is 0.

2.11.1 Scalar triple product and the volume of a tetrahedron

For a tetrahedron whose sides are described by the vectors �a, �b, �c (sides of length |�a|, |�b|, |�c|), a
geometrical interpretation of �a ············· �b×�c is the volume of the parallelepiped . This formula

helps calculate mass and volume of generic 3D shapes (e.g., for highway cut/fill calcu-
lations and CAD solid modeling). A tetrahedron’s volume is calculated in Section 3.3.

Tetrahedron Volume = 1
6 �a ············· �b×�c = 1

6 �a ×�b ············· �c =
(3.3)

1
3

�∆(�a, �b) ·············�c (10) a

b

c

2.11.2 (× ············· ) to change vector equations to scalar equations (see Hw 1.29)

Section 2.9.3 showed one method to form scalar equations from the vector equation �v = �0.
A 2nd method expresses �v in terms of three non-coplanar (but not necessarily orthogonal or unit)

vectors �a1,�a2,�a3, and writes the equally valid (but generally different) set of linearly independent
scalar equations shown below [proved by directly by substituting �v = �0 into eqn(4.2)].
Method 2: if �v = v1�a1 + v2�a2 + v3�a3 = �0 ⇒ v1 = 0 v2 = 0 v3 = 0

a3

a2

a1

Courtesy Accuray Inc. Vectors are widely useful, e.g., in medical robotics, cut/fill calculations for highway & railway construction, . . .
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