Basis independent vectors and their properties

Show work – except for \clubsuit fill-in-blanks-problems (print .pdf from www.MotionGenesis.com \Rightarrow Textbooks \Rightarrow Resources).

1.1 ♣ Solving problems – what engineers do.

Understanding this material results from <u>doing</u> problems. Many problems are guided to help you synthesize processes (imitation). You are encouraged to work by yourself or with colleagues/instructors and use the textbook's reference theory and other resources.

Confucius 500 B.C.

"I hear and I forget.

I see and I remember.

I and I understand."

"By three methods we may learn wisdom:
First, by reflection, which is noblest;
Second, by imitation, which is easiest;
Third by experience, which is the bitterest."

1.2	#	What	is	\mathbf{a}	vector?	(Section	2.2)
-----	---	------	----	--------------	---------	----------	------

Two properties (attributes) of a vector are and

1.3 ♣ What is a zero vector? (Section 2.3)

A zero vector $\vec{0}$ has a magnitude of $0/1/2/\infty$. A zero vector $\vec{0}$ has no direction. True/False.

1.4 ♣ Unit vectors. (Section 2.4)

A unit vector has a magnitude of $0/1/2/\infty$. All unit vectors are equal. True/False.

1.5 ♣ <u>Draw</u> the following vectors: (Section 2.2)

• Long, horizontally-right vector $\vec{\mathbf{a}}$

Short, vertically-upward vector \$\bar{\bar{\bar{\bar{\bar{\bar{\bar{\chi}}}}}}\$ Outwardly-directed unit vector \$\hat{\chi}\$.

1.6 • Vector magnitude and direction (orientation and sense). (Section 2.2)

The figure to the right shows a vector $\vec{\mathbf{v}}$. **Draw** the following vectors.

- $\vec{\mathbf{a}}$: Same magnitude and same direction as $\vec{\mathbf{v}}$ ($\vec{\mathbf{a}} = \vec{\mathbf{v}}$).
- b: Same magnitude and orientation as $\vec{\mathbf{v}}$, but different sense.
- $\vec{\mathbf{c}}$: Same direction as $\vec{\mathbf{v}}$, but different magnitude.
- $\vec{\mathbf{d}}$: Same magnitude as $\vec{\mathbf{v}}$, but different direction (orientation).
- $\vec{\mathbf{e}}$: Different magnitude and different direction (orientation) as $\vec{\mathbf{v}}$.

1.7 ♣ Magnitude of a vector. (Section 2.2)

Consider a real number x and a horizontally-right pointing unit vector $\hat{\mathbf{i}}$. The **magnitude** of the vector $-x\hat{\mathbf{i}}$ is (circle <u>one</u>): positive negative non-negative non-positive.

1.8 ♣ Negating a vector. (Section 2.8)

Complete the figure to the right by <u>drawing</u> the vector $-\dot{\mathbf{b}}$. Negating the vector $\mathbf{\vec{b}}$ results in a vector with different (circle <u>all</u> that apply): magnitude direction orientation sense

Historical note: Negative numbers (e.g., -3) were not widely accepted until 1800 A.D.

1.9 ♣ Multiplying a vector by a scalar. (Section 2.7)

Complete the figure to the right by drawing the vectors $2\vec{\mathbf{v}}$ and $-2\vec{\mathbf{v}}$.

The following statements involve a vector $\vec{\mathbf{v}}$ and a real non-zero scalar s ($s \neq 0$). If a statement is true, provide a numerical value for s that supports your answer

- $s \vec{\mathbf{v}}$ can have a different **direction** than $\vec{\mathbf{v}}$.
- $s\vec{\mathbf{v}}$ can have a different **sense** than $\vec{\mathbf{v}}$.
- $s \vec{\mathbf{v}}$ can have a different *orientation* than $\vec{\mathbf{v}}$.

1.10 ♣ Graphical vector addition/subtraction - draw. (Sections 2.6,2.8)

 $\mathbf{Draw} \ \ \mathbf{\vec{a}} + \mathbf{\vec{b}}$

Draw $\vec{a} - \vec{b}$

		Ľ) <u>1</u>	`&	av	W		Ī	j	_	-	ā	Ĺ			
Γ΄ 			_				_				Ī					!
) 																
1																
! !																
	 -	-	_	_	_	_	_	_	-	_	_	-	-	_	-	,

1.11 • Visual representation of a vector dot-product. (Section 2.9)

Write the **definition** of the dot-product of a vector $\vec{\mathbf{a}}$ with a vector $\vec{\mathbf{b}}$. Include a **sketch** with **each symbol** in the right-hand-side of your definition clearly labeled. The sketch should include \vec{a} , \vec{b} , $|\vec{a}|$, $|\vec{b}|$, ... Result:

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \triangleq$$

1.12 \(\text{Visual representation of a vector cross-product.} \(\text{(Section 2.10)} \)

Write the **definition** of the cross-product of a vector $\vec{\mathbf{a}}$ with a vector $\vec{\mathbf{b}}$. Include a **sketch** with **each symbol** in your definition labeled and described. Result:

1.13 ♣ Properties of vector dot-products and cross-products. (Sections 2.9.1 and 2.10.1)

When $\vec{\mathbf{a}}$ is parallel to $\vec{\mathbf{b}}$:	$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$	True/False	$ec{\mathbf{a}} imes ec{\mathbf{b}} = ec{0}$	True/False
When $\vec{\mathbf{a}}$ is perpendicular to $\vec{\mathbf{b}}$:	$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$	True/False	$ec{\mathbf{a}} imes ec{\mathbf{b}} = ec{0}$	True/False
For arbitrary vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$:	$ec{\mathbf{a}} \cdot ec{\mathbf{b}} = ec{\mathbf{b}} \cdot ec{\mathbf{a}}$	True/False	$ec{\mathbf{a}} imes ec{\mathbf{b}} = ec{\mathbf{b}} imes ec{\mathbf{a}}$	True/False

where $\hat{\mathbf{u}}$ is

1.14 \$\textcolor \text{Calculating vector dot-products and cross-products via definitions. (Sections 2.9 and 2.10)

Draw a unit vector $\hat{\mathbf{k}}$ outward-normal to the plane of the paper.

Knowing vector $\vec{\mathbf{a}}$ has magnitude 2 and vector $\vec{\mathbf{b}}$ has magnitude 4, calculate the following dot-products and cross-products via their **definitions** (2⁺ significant digits).

1.15 ♣ Property of scalar triple product. (Section 2.11).

For arbitrary non-zero vectors $\vec{\mathbf{a}}$, $\vec{\mathbf{b}}$, $\vec{\mathbf{c}}$: $\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \cdot \vec{\mathbf{c}}$ Never/Sometimes/Always A property of the *scalar triple product* is $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} \times \vec{\mathbf{a}} = 0$. True/False.

1.16 Optional: Property of vector triple cross-product. (Sections 2.10.1 and 2.11)

Complete the following equation: $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = \vec{\mathbf{b}} () - \vec{\mathbf{c}} ()$

Circle true or false (show supporting work): $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = (\vec{\mathbf{a}} \times \vec{\mathbf{b}}) \times \vec{\mathbf{c}} + \vec{\mathbf{b}} \times (\vec{\mathbf{a}} \times \vec{\mathbf{c}})$ True/False

- 1.17 \clubsuit Optional: Proof of magnitude of vector cross product property. (Sections 2.9 and 2.10) Letting $\widehat{\boldsymbol{\lambda}}$ be a *unit vector* and $\vec{\mathbf{v}}$ be *any vector*, prove¹ $|\vec{\mathbf{v}} \times \widehat{\boldsymbol{\lambda}}|^2 = \vec{\mathbf{v}} \cdot \vec{\mathbf{v}} (\vec{\mathbf{v}} \cdot \widehat{\boldsymbol{\lambda}})^2$.
- 1.18 \clubsuit Vector exponentiation: \vec{v}^2 and \vec{v}^3 . Complete the 3-step proofs. (Section 2.9)

Step 1: Complete the **definition** of $\vec{\mathbf{v}}^2$ in terms of $|\vec{\mathbf{v}}|$.

Step 2: Use the **definition** of the dot-product to show how $\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}$ can be expressed in terms of $|\vec{\mathbf{v}}|$.

Step 3: Combine these two definitions to provide an alternate way to calculate $\vec{\mathbf{v}}^2$ with a vector dot-product.

Result: $\vec{\mathbf{v}}^2 \triangleq |\vec{\mathbf{v}}|$ $\vec{\mathbf{v}} \cdot \vec{\mathbf{v}} = (2.2)$

Complete the 3-step proof that relates $\vec{\mathbf{v}}^3$ to $\vec{\mathbf{v}} \cdot \vec{\mathbf{v}}$ raised to a real number.

Result: $\vec{\mathbf{v}}^3 \triangleq |\vec{\mathbf{v}}| = (\vec{\mathbf{v}} \cdot \vec{\mathbf{v}})$

¹One way to prove this is to write $(\vec{\mathbf{v}} \times \hat{\boldsymbol{\lambda}})^2 = (\vec{\mathbf{v}} \times \hat{\boldsymbol{\lambda}}) \cdot (\vec{\mathbf{v}} \times \hat{\boldsymbol{\lambda}}) = \vec{\mathbf{v}} \cdot [\hat{\boldsymbol{\lambda}} \times (\vec{\mathbf{v}} \times \hat{\boldsymbol{\lambda}})]$ and then use the vector triple cross-product property $\vec{\mathbf{a}} \times (\vec{\mathbf{b}} \times \vec{\mathbf{c}}) = \vec{\mathbf{b}} (\vec{\mathbf{a}} \cdot \vec{\mathbf{c}}) - \vec{\mathbf{c}} (\vec{\mathbf{a}} \cdot \vec{\mathbf{b}})$ from Section 2.10. Alternately, it is helpful to write $\vec{\mathbf{v}} = \vec{\mathbf{v}}_{\perp} \hat{\boldsymbol{\lambda}}_{\perp} + \vec{\mathbf{v}}_{\parallel} \hat{\boldsymbol{\lambda}}$ where $\vec{\mathbf{v}}_{\perp} \hat{\boldsymbol{\lambda}}_{\perp}$ is the component of $\vec{\mathbf{v}}$ that is perpendicular to $\hat{\boldsymbol{\lambda}}$ and $\vec{\mathbf{v}}_{\parallel} \hat{\boldsymbol{\lambda}}$ is the component of $\vec{\mathbf{v}}$ that is parallel to $\hat{\boldsymbol{\lambda}}$.

 $1.19 \, \clubsuit \, |c \, \widehat{\mathbf{a}}_{\mathbf{x}}|$ Calculate vector magnitude with dot products. (Section 2.9 and Hw 1.18)

Show how the vector dot-product can be used to show that the magnitude of the vector $c \hat{\mathbf{a}}_{\mathbf{x}}$ (c is a positive or **negative** number and $\hat{\mathbf{a}}_{x}$ is a unit vector) can be written solely in terms of c (without $\hat{\mathbf{a}}_{x}$).

Result:

$$|c\,\widehat{\mathbf{a}}_{\mathbf{x}}| = \sqrt{} = \sqrt{c^2 * } = \sqrt{c}$$

1.20 † Magnitude of the vector $\vec{\mathbf{v}}$. Show work. (Section 2.9)

Knowing the angle between a unit vector $\hat{\mathbf{i}}$ and unit vector $\hat{\mathbf{j}}$ is 110°, calculate a numerical value for the magnitude of $\vec{\mathbf{v}} = 3\hat{\mathbf{i}} + 4\hat{\mathbf{j}}$.

Referring to the figure to the right, find the numerical value for the angle between vector $\vec{\mathbf{a}}$ and vector $\vec{\mathbf{b}}$.

$$\angle(\vec{\mathbf{a}}, \vec{\mathbf{b}}) = \bigcirc^{\circ}$$

1.22 Visual estimation of vector dot/cross-products. Show work. (Sections 2.9 and 2.10)

Estimate (e.g., using your pinky) the magnitude of the vector $\vec{\mathbf{p}}$ shown below. Note: 1 inch $\triangleq 2.54$ cm.

Estimate the angle between $\vec{\mathbf{p}}$ and $\vec{\mathbf{q}}$, $\vec{\mathbf{p}} \cdot \vec{\mathbf{q}}$, and the magnitude of $\vec{\mathbf{p}} \times \vec{\mathbf{q}}$. Show work.

Result: (Provide numerical results with 1 or more significant digits).

1.23 \clubsuit Form the *unit* vector $\hat{\mathbf{u}}$ having the same direction as $c \hat{\mathbf{a}}_x$. (Section 2.4)

Result:

$$\hat{\mathbf{u}} = \widehat{\mathbf{a}}$$

Note: $\hat{\mathbf{a}}_{\mathbf{x}}$ is a unit vector and c is a non-zero real number, e.g., 3 or -3

1.24 ♣ Coefficient of û in cross products – definitions and trig functions. (Section 2.10)

The *cross product* of vectors \vec{a} and \vec{b} can be written in terms of a real scalar s as $\vec{a} \times \vec{b} = s \hat{u}$ where $\hat{\mathbf{u}}$ is a unit vector perpendicular to both $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ in a direction defined by the **right-hand** rule. The coefficient s of the unit vector $\hat{\mathbf{u}}$ is inherently non-negative. True/False.

1.25 ♣ Orthogonal vectors: Insights via drawing. (Section 2.10)

Consider three unit vectors $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$, and $\hat{\mathbf{c}}$.

Vector $\hat{\mathbf{a}}$ is perpendicular to vector $\hat{\mathbf{b}}$.

Vector $\hat{\mathbf{b}}$ is perpendicular to vector $\hat{\mathbf{c}}$.

Vector $\hat{\mathbf{a}}$ is not parallel to vector $\hat{\mathbf{c}}$.

In all cases, $\hat{\mathbf{a}}$ is perpendicular to $\hat{\mathbf{c}}$. True/False. Explain your answer by **drawing** $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$, $\hat{\mathbf{c}}$ and relevant angles.

1.26 Calculating distance between a point and a line via cross-products. (Section 2.10.2)

 $\underline{\mathbf{Draw}}$ a horizontally-right unit vector $\widehat{\mathbf{a}}_{\mathbf{x}}$ and vertically-upward unit vector $\widehat{\mathbf{a}}_{\mathbf{v}}$.

<u>Draw</u> a point Q whose position vector from a point P is $\vec{\mathbf{r}}^{Q/P} = 5 \hat{\mathbf{a}}_{x}$.

<u>Draw</u> a line L that passes through point P and is parallel to $\hat{\mathbf{u}} = \frac{3}{5} \hat{\mathbf{a}}_{x} + \frac{4}{5} \hat{\mathbf{a}}_{y}$.

Calculate the **distance** d between Q and L using both formulas in equation (2.9).

Result:

1.27 • Vector operations and units. (Chapter 2)

Circle the vector operations below (scalar multiplication, addition, dot-product, etc.) that are **defined** for a position vector $\vec{\mathbf{a}}$ (with units of m) and a velocity vector $\vec{\mathbf{b}}$ (with units of $\frac{\mathbf{m}}{\mathbf{s}}$).

$$-\, ec{\mathbf{a}}$$

$$5\,\bar{\mathsf{a}}$$

$$\vec{\mathbf{a}} / 5$$

$$5\,\vec{\mathbf{a}} \qquad \vec{\mathbf{a}}/5 \qquad \vec{\mathbf{a}}+\vec{\mathbf{b}} \qquad \vec{\mathbf{a}}\cdot\vec{\mathbf{b}}$$

$$\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}$$

$$ec{\mathbf{a}} imes ec{\mathbf{b}}$$

1.28 ♣ "Popular" vector operations. (Chapter 2)

For each vector operation, provide its name and determine whether it produces a scalar or vector.

Name	Symbol	Example	Operation produces
Addition	+	$\vec{\mathbf{a}} + \vec{\mathbf{b}}$	Scalar/Vector
	-	$-\vec{\mathbf{b}}$	Scalar/Vector
	*	$3*\vec{\mathbf{b}}$	Scalar/Vector
	•	$\vec{\mathrm{a}}\cdot\vec{\mathrm{b}}$	Scalar/Vector
	×	$ec{\mathbf{a}} imes ec{\mathbf{b}}$	Scalar/Vector

1.29 \(\delta\) Using vector identities to simplify expressions (refer to Homework 1.13).

One reason to treat vectors as **basis-independent** quantities is to simplify vector expressions **with**out resolving the vectors into orthogonal " \vec{x} , \vec{y} , \vec{z} " or " \vec{i} , \vec{j} , \vec{k} " components. Simplify the following vector expressions using various properties of dot-products and cross-products.

Express your results in terms of dot-products • and cross-products \times of the arbitrary vectors $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$, $\vec{\mathbf{w}}$ (i.e., $\vec{\mathbf{u}}$, $\vec{\mathbf{v}}$, $\vec{\mathbf{w}}$ are not orthogonal).

Vector expression	Simplified vector expression
$(3\vec{\mathbf{u}}-2\vec{\mathbf{v}})\times(\vec{\mathbf{u}}+\vec{\mathbf{v}})$	$ec{f u} imesec{f v}$
$(3\vec{\mathbf{u}}-2\vec{\mathbf{v}})\cdot(\vec{\mathbf{u}}+\vec{\mathbf{v}})$	$ec{\mathbf{u}}^2 - ec{\mathbf{v}}^2 + ec{\mathbf{u}} \cdot \vec{\mathbf{v}}$
$(\vec{\mathbf{u}} - \vec{\mathbf{v}}) \cdot (\vec{\mathbf{u}} + \vec{\mathbf{v}})$	_
$(3\vec{\mathbf{u}} - 2\vec{\mathbf{v}}) \times (\vec{\mathbf{u}} + \vec{\mathbf{v}}) \cdot (2\vec{\mathbf{u}} - 7\vec{\mathbf{v}})$	
$(\vec{\mathbf{u}} + \vec{\mathbf{v}}) \times (\vec{\mathbf{v}} + 2\vec{\mathbf{w}}) \cdot (\vec{\mathbf{w}} + 2\vec{\mathbf{u}})$	$ec{\mathbf{u}} imes ec{\mathbf{v}} oldsymbol{\cdot} ec{\mathbf{w}}$

1.30 Changing a vector equation to scalar equations. Show work. (Section 2.9.5)

Draw three mutually orthogonal unit vectors $\hat{\mathbf{p}}$, $\hat{\mathbf{q}}$, $\hat{\mathbf{r}}$.

Use a vector operation (e.g., +, -, *, \cdot , \times) to transform the following **vector** (a) equation into <u>one</u> scalar equation and subsequently solve the scalar equation.

$$(2x-4) \hat{\mathbf{p}} = \vec{\mathbf{0}} \qquad \stackrel{??}{\Rightarrow} \qquad x=2$$

(b) Show *every* vector operation (e.g., +, -, *, or \times) that transforms the following **vector** equation into three scalar equations and subsequently solve the scalar equations for x, y, z.

$$(2x-4) \ \hat{\mathbf{p}} \ + \ (3y-9) \ \hat{\mathbf{q}} \ + \ (4z-16) \ \hat{\mathbf{r}} \ = \ \hat{\mathbf{0}}$$

$$x = 2$$

$$u = 3$$

$$x = 2$$
 $y = 3$ $z = \square$

1.31 ♣ Number of independent scalar equations from one vector equation. (Section 2.9.5)

Consider the **vector** equation shown to the right that can be useful for static analyses of any system S.

 $\vec{\mathbf{F}}^S = \vec{\mathbf{0}}$

Complete the blanks in the table to the right with <u>all</u> integers that could be equal to the number of *independent scalar* equations produced by the previous vector equation for any system S.

Hint: See Homework 1.30 for ideas.

Note: Regard 1D/linear as meaning $\vec{\mathbf{f}}^S$ can be expressed in terms of a single unit vector $\hat{\mathbf{i}}$ whereas 2D/planar means $\vec{\mathbf{F}}^S$ can be expressed in terms of two non-parallel unit vectors $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$, and 3D/spatial means $\vec{\mathbf{F}}^S$ can be expressed in terms of three non-coplanar unit vectors $\hat{\mathbf{i}}$, $\hat{\mathbf{j}}$, $\hat{\mathbf{k}}$.

1.32 • Vector concepts: Solving a vector equation (just circle true or false and fill-in the blank).

Consider the following vector equation written in terms of the scalars x, y, z and three unique non-orthogonal **coplanar** unit vectors $\hat{\mathbf{a}}_1$, $\hat{\mathbf{a}}_2$, $\hat{\mathbf{a}}_3$.

Explain: $\hat{\mathbf{a}}_2$ can be expressed in terms of $\hat{\mathbf{a}}_1$ and $\hat{\mathbf{a}}_3$ (i.e., $\hat{\mathbf{a}}_2$ is a linear combination of $\hat{\mathbf{a}}_1$ and $\hat{\mathbf{a}}_3$). Hence the vector equation produces linearly independent scalar equations.

1.33 ♣ A vector revolution in geometry. (Chapter 2)

The relatively new invention of vectors (Gibbs ≈ 1900 AD) has revolutionized Euclidean geometry (Euclid ≈ 300 BC). For each geometrical quantity below, circle the vector operation(s) (either the dot-product, cross-product, or both) that is **most** useful for their calculation.

Length:	•	×	Angle:	•	×
Area:	•	×	Volume:	•	X

1.34 † Microphone cable lengths (non-orthogonal walls) "It's just geometry". Show work.

A microphone Q is attached to three pegs A, B, C by three cables. Knowing the peg locations, microphone location, and the angle θ between the vertical walls, express L_A , L_B , L_C solely in terms of numbers and θ . Next, complete the table by calculating L_B when $\theta = 120^{\circ}$.

Hint: To do this **efficiently**, use only unit vectors $\hat{\mathbf{u}}$, $\hat{\mathbf{v}}$, $\hat{\mathbf{w}}$, and do <u>not</u> introduce an **orthogonal** set of unit vectors.

Hint: Use the distributive property of the vector dot-product as shown in Section 2.9.1 and Homework 2.4.

Note: Synthesis problems are difficult. Engineers solve problems. Think, talk, draw, sleep, walk, get help, ...

Distance between A and B	20 m
Distance between B and C	15 m
Distance between $N_{\rm o}$ and B	8 m
Distance along back wall (see picture)	7 m
Q 's height above $N_{\rm o}$	5 m
Distance along side wall (see picture)	8 m
L_A : Length of cable joining A and Q	16.9 m
L_B : Length of cable joining B and Q	8.1 m
L_C : Length of cable joining C and Q	14.2 m

 $\vec{\mathbf{r}}^{\,Q/N_{\rm o}} = 7\,\widehat{\mathbf{u}} + 5\,\widehat{\mathbf{v}} + 8\,\widehat{\mathbf{w}}$

Result:

$$L_A = \sqrt{202 - 168 \cos(\theta)} \qquad L_B =$$

$$L_C = \sqrt{137 - \cos(\theta)}$$