
Motivating example (MIPSI): Babyboot

Model
Shown right is a model of a swinging babyboot (uniform plate B) attached
by a shoelace (thin uniform rigid rod A) to a fixed rigid support N. Rod A
is attached to N by a revolute joint at point No of N. B is attached to A
with a 2nd revolute joint at point Bo so B can rotate freely about A’s axis.
Note: The revolute joints’ axes are perpendicular, not parallel.

• Bodies: The rod and plate are (inflexible/undeformable).

• Connections: Revolute joints are (massless, frictionless, no slop).

• Forces: is uniform and constant. Other contact forces
(e.g., and solar/light pressure) and distance forces (e.g.,
electromagnetic and other gravitational) are negligible.

• Newtonian reference frame: Earth.
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Identifiers
Right-handed sets of unit vectors n̂x, n̂y, n̂z; âx, ây, âz; b̂x, b̂y, b̂z are fixed in N, A, B, respectively,
with n̂x = âx parallel to the revolute axis joining A to N, n̂z vertically-upward, âz = b̂z parallel to the
rod’s long axis (and the revolute axis joining B to A), and b̂z perpendicular to plate B.

Quantity Symbol Type Value
Earth’s gravitational constant g Constant 9.81 m/s2

Distance between No and Acm LA Constant 7.5 cm
Distance between No and Bcm 20 cm
Mass of A 0.01 kg
Mass of B 0.1 kg
A’s moment of inertia about Acm for âx IA Constant 0.05 kg∗cm2

B’s moment of inertia about Bcm for b̂x IB
x Constant 2.5 kg∗cm2

B’s moment of inertia about Bcm for b̂y Constant 0.5 kg∗cm2

B’s moment of inertia about Bcm for b̂z Constant 2.0 kg∗cm2

Angle from n̂z to âz with +n̂x sense Varies
Angle from ây to b̂y with +âz sense Varies
Time t Independent variable Varies

Note: Instructor worksheet at www.MotionGenesis.com ⇒ Textbooks ⇒ Resources completes the blanks above.
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The ODEs (ordinary differential equations) governing the motion of this mechanical system are4
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q̈B =
-q̇2

A sin(qB) cos(qB) (IB
x − IB

y )
IB
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4Four methods to form equations of motion are: Free-body diagrams of A and B (which is inefficient as it introduces
up to 10 unknown force/torque measures); D’Alembert’s method (MG road-maps of Section 23.1) which efficiently forms
the two equations shown for q̈A and q̈B (but requires a clever selection of systems, points, and unit vectors); Lagrange’s
equations (an energy-based method that automates D’Alembert’s cleverness); Kane’s equations (a modern efficient blend
of D’Alembert and Lagrange).
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Simplify and solve
Computers has revolutionized the solution of differential equations. There are many numerical algo-
rithms for solving nonlinear, coupled, variable coefficient, ODEs (ordinary differential equations) including
Euler’s method, predictor-corrector, Runga-Kutta, etc. In addition, there are many programs (MATLABR©,
MotionGenesis, WolframAlpha, etc.) that make it easy to solve ODEs.

Computer (numerical) solution of ODEs with MotionGenesis (with plotting)

Variable qA’’, qB’’ % Angles and first/second time-derivatives.

%----------------------------------------------------------------------------
qA’’ = 2*( 508.89*sin(qA) - sin(qB)*cos(qB)*qA’*qB’ ) / (-21.556 + sin(qB)^2)

qB’’ = -sin(qB)*cos(qB)*qA’^2

%----------------------------------------------------------------------------

Input tFinal = 10 sec, tStep = 0.02 sec, absError = 1.0E-07
Input qA = 90 deg, qB = 1.0 deg, qA’ = 0.0 rad/sec, qB’ = 0.0 rad/sec

Output t sec, qA degrees, qB degrees

%----------------------------------------------------------------------------

ODE() solveBabybootODE
Plot solveBabybootODE.1[ 1, 2 ] % Plot qA (degrees) vs time t (seconds).

Plot solveBabybootODE.1[ 1, 3 ] % Plot qB (degrees) vs time t (seconds).

Quit

Interpret
This simple system has strange non-intuitive motion. For certain initial values of qA, plate B’s motion is
well-behaved and “stable” whereas for other initial values of qA, B’s motion is “chaotic” – meaning that a
small variation in the initial value of qB or numerical integration inaccuracies lead to dramatically different
results (these ODEs test numerical integrators – the plots below required an integrator error of absError = 1 x 10-7).

The chart below and figure to
the right shows this system’s
regions of stability (black)
and instability (green).

Initial value of qA Stability
0◦ ≤ qA(0) ≤ 71.3◦ Stable black

71.4◦ ≤ qA(0) ≤ 111.77◦ Unstable green

111.78◦ ≤ qA(0) ≤ 159.9◦ Stable black
160.0◦ ≤ qA(0) ≤ 180.0◦ Unstable green

The “chaotic” plot below shows qB is very sensitive to initial values. A 0.5◦

change in the initial value qB(0) results in a 2000+◦ difference in qB(t = 10)!

“Stable”: Released with qA(0) = 45◦
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“Chaotic”: Released with qA(0) = 90◦
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More information about this problem is in “Mechanical Demonstration of Mathematical Stability and Instability”, Interna-

tional Journal of Engineering Education (Journal of Mechanical Engineering Education), Vol. 2, No. 4, 1974, pp. 45-47, by

Thomas Kane. Or visit www.MotionGenesis.com ⇒ Get Started ⇒ Chaotic Pendulum (Babyboot) .
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% MotionGenesis file: MGBabybootDynamics.txt

% Problem: Analysis of 3D chaotic double pendulum.

% Copyright (c) 2009 Motion Genesis LLC. All rights reserved.
%--------------------------------------------------------------------

SetDigits( 5 ) % Number of digits displayed for numbers.

%--------------------------------------------------------------------

NewtonianFrame N % Earth.
RigidBody A % Upper rod.

RigidBody B % Lower plate.

%--------------------------------------------------------------------

Variable qA’’ % Pendulum angle and its time-derivatives.
Variable qB’’ % Plate angle and its time-derivative.

Constant LA = 7.5 cm % Distance from pivot to A’s mass center.

Constant LB = 20 cm % Distance from pivot to B’s mass center.

Constant g = 9.81 m/s^2 % Earth’s gravitational acceleration.
A.SetMassInertia( mA = 10 grams, IAx = 50 g*cm^2, IAy, IAz )

B.SetMassInertia( mB = 100 grams, IBx = 2500 g*cm^2, IBy = 500 g*cm^2, IBz = 2000 g*cm^2 )

%--------------------------------------------------------------------

% Rotational kinematics.
A.RotateX( N, qA )

B.RotateZ( A, qB )

%--------------------------------------------------------------------

% Translational kinematics.
Acm.Translate( No, -LA*Az> )

Bcm.Translate( No, -LB*Az> )

%--------------------------------------------------------------------

% Add relevant contact/distance forces.
System.AddForceGravity( -g*Nz> )

%--------------------------------------------------------------------

% Equations of motion via free-body-diagrams (MG road-maps).

Dynamics[1] = Dot( Ax>, System(A,B).GetDynamics(No) )

Dynamics[2] = Dot( Bz>, B.GetDynamics(Bcm) )
%--------------------------------------------------------------------

% Kinetic and potential energy.

KE = System.GetKineticEnergy()

PE = System.GetForceGravityPotentialEnergy( -g*Nz>, No )
MechanicalEnergy = KE + PE

%--------------------------------------------------------------------

% Optional: Equations of motion with Kane’s method.

SetGeneralizedSpeed( qA’, qB’ )
KaneDynamics = System.GetDynamicsKane()

isSameDynamics = IsSimplifyEqual( Dynamics, KaneDynamics )

%--------------------------------------------------------------------

% Optional: Equations of motion with Lagranges’s method.
SetGeneralizedCoordinates( qA, qB )

LagrangeDynamics = System.GetDynamicsLagrange( SystemPotential = PE )

isSameDynamics := IsSimplifyEqual( Dynamics, LagrangeDynamics )

%--------------------------------------------------------------------
% Solve dynamics equations for qA’’, qB’’.

Solve( Dynamics = 0, qA’’, qB’’)

%--------------------------------------------------------------------

% Integration parameters and initial values.
Input tFinal = 10 sec, tStep = 0.02 sec, absError = 1.0E-07, relError = 1.0E-07

Input qA = 90 deg, qA’ = 0.0 rad/sec, qB = 1.0 deg, qB’ = 0.0 rad/sec

%--------------------------------------------------------------------

% List output quantities and solve ODEs.
Output t sec, qA deg, qB deg, MechanicalEnergy Joules

ODE() MGBabybootDynamics

%--------------------------------------------------------------------

% Record input together with responses
Save MGBabybootDynamics.html

Quit
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Investigation of stability: More simulation results
Stable: Released from 5◦
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Stable: Released from 30◦
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Chaotic: Released from 90◦
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Stable: Released from 135◦
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Beat: Released from 158◦
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Chaotic: Released from 177◦
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