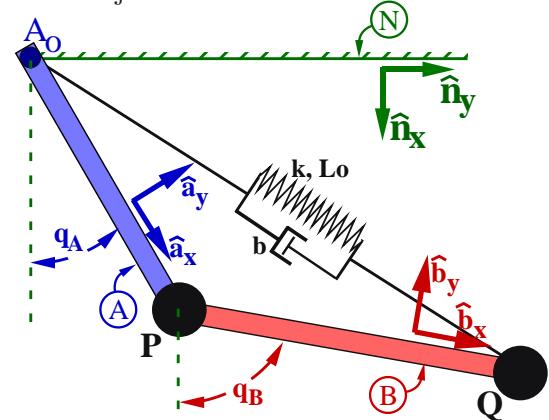


20.9 Optional: Statics and dynamics for spring-damper double pendulum.

The following figure shows two light rigid rods A and B and a spring-damper that support two particles P and Q in a Newtonian reference frame N . Rod A connects with frictionless revolute joints to N and B at points A_o and P , respectively. Right-handed sets of orthogonal unit vectors $\hat{\mathbf{n}}_i$, $\hat{\mathbf{a}}_i$, $\hat{\mathbf{b}}_i$ ($i = x, y, z$) are fixed in N , A , B , with $\hat{\mathbf{n}}_x$ vertically-downward, $\hat{\mathbf{a}}_x$ directed from A_o to P , $\hat{\mathbf{b}}_x$ directed from P to Q , and $\hat{\mathbf{n}}_z = \hat{\mathbf{a}}_z = \hat{\mathbf{b}}_z$ parallel to the revolute joints' axes.

Quantity	Symbol	Value
Mass of P	m^P	10 kg
Mass of Q	m^Q	20 kg
Earth's gravitational constant	g	$9.8 \frac{\text{m}}{\text{s}^2}$
Distance from A_o to P	L_A	1 m
Distance from P to Q	L_B	2 m
Spring's natural length	L_o	1 m
Linear spring constant	k	$200 \frac{\text{N}}{\text{m}}$
Linear damping constant (force)	b	$100 \frac{\text{N*s}}{\text{m}}$
Linear damping constant (torques)	c	$100 \frac{\text{N*m s}}{\text{rad}}$
Angle from $\hat{\mathbf{n}}_x$ to $\hat{\mathbf{a}}_x$ with $+\hat{\mathbf{n}}_z$ sense	q_A	Variable
Angle from $\hat{\mathbf{n}}_x$ to $\hat{\mathbf{b}}_x$ with $+\hat{\mathbf{n}}_z$ sense	q_B	Variable



- Form statics equations governing q_A and q_B (when damping has stopped the system's motion).¹

Determine four static solutions for q_A and q_B between -180° and 180° .

Result: (Using intuition/guessing, circle the **stable** solutions).

$$L_{\text{Spring}} = \sqrt{L_A^2 + L_B^2 + 2 L_A L_B \cos(q_A - q_B)} \quad s = L_{\text{Spring}} - L_o$$

$$\text{Static}_1 = L_A \left[L_B k s \frac{\sin(q_A - q_B)}{L_{\text{Spring}}} - g (m^P + m^Q) \sin(q_A) \right] = 0$$

$$\text{Static}_2 = L_B \left[-L_A k s \frac{\sin(q_A - q_B)}{L_{\text{Spring}}} - g (m^Q \sin(q_B)) \right] = 0$$

Static solutions

#	q_A	q_B
1	0°	0°
2	-50.2°	35.2°
3	50.2°	-35.2°
4	180°	180°

- Form dynamics equations governing \ddot{q}_A and \ddot{q}_B (use air damping torque $\vec{T}^A = -c \dot{q}_A \hat{\mathbf{n}}_z$ and $\vec{T}^B = -c \dot{q}_B \hat{\mathbf{n}}_z$).

Result:

$$\dot{s} = -L_A L_B \sin(q_A - q_B) (\dot{q}_A - \dot{q}_B) / L_{\text{Spring}}$$

$$\text{Static}_1 + b L_A L_B \frac{\sin(q_A - q_B)}{L_{\text{Spring}}} \dot{s} - c \dot{q}_A = (m^P + m^Q) L_A^2 \ddot{q}_A + m^Q L_A L_B \cos(q_A - q_B) \ddot{q}_B + m^Q L_A L_B \sin(q_A - q_B) \dot{q}_B^2$$

$$\text{Static}_2 - b L_A L_B \frac{\sin(q_A - q_B)}{L_{\text{Spring}}} \dot{s} - c \dot{q}_B = m^Q L_A L_B \cos(q_A - q_B) \ddot{q}_A + m^Q L_B^2 \ddot{q}_B - m^Q L_A L_B \sin(q_A - q_B) \dot{q}_A^2$$

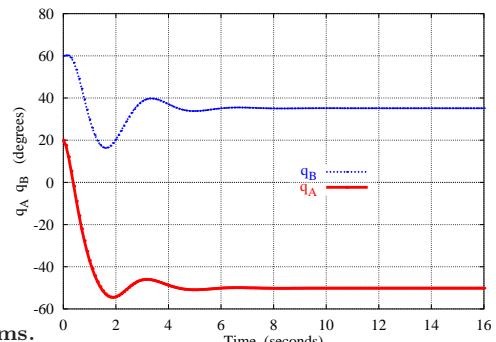
- Plot q_A and q_B for $0 \leq t \leq 16$ sec when the system is released from **rest** with $q_A = 20^\circ$ and $q_B = 60^\circ$.

Verify the following static solution for q_A , q_B , and the $\hat{\mathbf{n}}_x$ and $\hat{\mathbf{n}}_y$ measures of the reaction force on A_o .

Result: $q_A(t=16) \approx -50.2^\circ \quad q_B(t=16) \approx 35.2^\circ$
 $F_x(t=16) \approx -294 \text{ N} \quad F_y(t=16) \approx 0 \text{ N}$

- Optional:** Form a numerical integration energy checking function and verify it remains approximately constant.

Solution at www.MotionGenesis.com \Rightarrow [Get Started](#) \Rightarrow Pendulums.



¹ Consider using **MG road-maps** or **potential energy** minimization for q_A and q_B , or **Kane's equations** for **generalized speeds** \dot{q}_A , \dot{q}_B , or **Lagrange's equations** for **generalized coordinates** q_A , q_B .